
MODELING AND ANALYZING INTEGRATED POLICIES

Michael McDougall

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2005

Carl A. Gunter and Rajeev Alur
Supervisors of Dissertation

Benjamin C. Pierce
Graduate Group Chairperson

Acknowledgments

This dissertation would have been impossible without the help and support of many.

This work was built on a foundation that was established by the OpEm group at Penn:

Watee Arjsamat, Alwyn Goodloe, and Jason Simas’ early work on the programmable

payment card prototype gave me a big head start. My work wouldhave been much tougher

if they had not already mapped out many of the dead-ends that loom when working with

new technology. Alwyn Goodloe deserves special mention as acollaborator on many

projects in addition to the payment card work—there were many occasions where my

work depended on the product of his sweat and tears.

The policy automata work was the product of many discussionswith my my advisors,

Carl Gunter and Rajeev Alur. I would like to thank them for alltheir help and advice on

this project as well as many other projects throughout my time at Penn. They were always

ready to do what needed to be done for me. They guided me to research projects when I

started. They eased the bureaucratic hassles of being a graduate student. They shared their

wisdom on conducting research, from finding the right research strategies to getting the

LATEX looking right. Finally, when the time was right, they knew when to step back and

let me struggle on my own. Through all this they became my friends. I am flattered and

honoured by the trust they have given me.

This dissertation was greatly improved by the comments, questions and suggestions

from my dissertation committee: Insup Lee, Andre Scedrov, Jeannette Wing and Steve

Zdancewic. I thank the committee members for their attention and enthusiasm, especially

Dr. Wing for making the effort to travel to Philadelphia to attend my defense.

ii

Penn has a great faculty and I came to feel like I was supportedby a large group of

tertiary advisors. Two standout examples of this group are Benjamin Pierce and Insup Lee.

Benjamin Pierce inspired me through his teaching, researchand good-natured enthusiasm.

He demonstrated how one can pursue rigourous theory and cooltechnology. Insup Lee’s

endless skepticism as a teacher and researcher forced me to really understand what I was

talking about a number of times—a lesson I have tried to internalize—and his advice has

been helpful and reassuring.

I would also like to thank Michael Felker, my department’s Graduate Coordinator,

who, time and time again, cut a safe path through bureaucratic jungles.

In my early years at Penn I was surrounded and inspired by the folks in the Theory

Lab: Trevor Jim, Davor Obradovic, Pankaj Kakkar and KarthikBhargavan. Those presen-

tations and brainstorming sessions prepared me for my research. I would like to especially

thank Trevor Jim for his help, sometimes offered directly and sometimes by standing as

an example of someone with a great eye for good research.

My life as a graduate student was eased by selfless financial, practical and moral sup-

port from my parents and my parents-in-law.

Most of all I need to thank my wife, Megan Susnis. Her support and patience as four

years stretched into six and a half, and as her husband sunk deeper into a dissertation, was

enormously valuable to me. She endured disruption and long periods of uncertainty so

that I could study what I love. I hope I can pay that debt back some day.

iii

ABSTRACT

MODELING AND ANALYZING INTEGRATED POLICIES

Michael McDougall

Carl A. Gunter and Rajeev Alur

Smart card technology has advanced to the point where computerized cards the size of

credit cards can hold multiple interacting programs. Thesemulti-applet cards are begin-

ning to be exploited by business and government in security,transport and financial ap-

plications. We conduct a thorough analysis of a programmable payment card application:

a smart card for making purchases which can be customized to allow or reject purchases

based on various policies that are installed by users. We describe a framework for spec-

ifying, merging and analyzing modular policies. We presentpolicy automata, a formal

model of computations that grant or deny access to a resource. This model combines state

machines with a voting system whereby the vote of each state machine is consolidated

and resolved into a decision to accept or reject. We use defeasible logic as the primary

mechanism for describing and resolving votes. This formal model effectively represents

complex policies as combinations of simpler modular policies. We present Polaris, a tool

which analyzes policy automata to reveal potential conflicts and compiles automata into

an executable form when combined with our on-card policy manager. We show the effec-

tiveness of our model in a case-study where actual University of Pennsylvania purchasing

policies are encoded as policy automata. We demonstrate thefeasibility of our framework

with experiments that show that our implementation can convert formal policy automata to

executable Java Card applets whose performance meets the requirements for retail credit

card transactions.

iv

COPYRIGHT

Michael McDougall

2005

Contents

Acknowledgments ii

1 Introduction 1

1.1 Modeling Policy Merging and Conflicts 2

1.2 Scope of the Work . 4

1.3 Limitations of the Previous Research 5

1.4 Applications of the Work . 6

1.4.1 Programmable Payment Cards 6

1.4.2 Network Access . 9

1.4.3 Other Applications . 10

1.5 Use Cases . 10

1.5.1 Programmable Payment Card 11

1.5.2 Firewall Configuration . 12

1.5.3 Access Control Module Compiler 13

1.6 Contributions . 14

1.7 Structure of the Dissertation .. . 16

2 Background 17

2.1 Automata Theory . 17

2.2 Formal Methods and Model Checking18

2.2.1 Models with Logic Extensions 19

vi

2.2.2 Formal Methods for Java . 19

2.3 Non-monotonic Logic . 20

2.4 Policy Languages . 22

2.5 Security Automata . 24

2.6 Java Card . 25

2.6.1 Formal Analysis Work on Java Cards 26

2.7 Network Access Policies . 26

3 Formal Framework 28

3.1 General Policies . 29

3.1.1 Security Policies . 29

3.1.2 Policy Classes . 30

3.1.3 Enforcing Policies . 31

3.1.4 Suppression Automata . 33

3.1.5 Reject-Blind Automata . 39

3.2 Composition . 41

3.3 Encoding Policies . 43

3.3.1 Votes and Conflicts . 43

3.3.2 Defeasible Logic . 45

3.3.3 Defeasible Logic as a Voting Mechanism51

3.3.4 Other Voting Mechanisms . 52

3.3.5 Policy Models . 54

3.3.6 Semantics . 56

3.4 Properties of Policy Automata .. 58

3.4.1 Conflicts . 58

3.4.2 Redundancy . 58

3.4.3 Refinement . 61

3.5 Analysis . 64

3.5.1 Detecting Conflicts . 64

vii

3.5.2 Redundancy . 64

3.6 Expressiveness . 67

3.6.1 Translating to Classical Automata 68

3.6.2 What the Model Cannot Express 70

3.7 Summary . 75

4 Language 76

4.1 Description of the Language .76

4.1.1 Imported Functions . 81

4.1.2 Translation to Formal Policy Automata 82

4.2 Example: A Payment Card Policy . 84

4.3 Example: Network Access Policies 88

4.4 Evaluation of the Language .90

4.4.1 Policies That Can Be Encoded 90

4.4.2 The Penn Purchasing Card System 93

4.4.3 Comparison and Discussion of Voting Mechanisms 102

4.4.4 Functionality Outside the Scope of the Language 110

4.5 Summary . 111

5 Implementation 113

5.1 Architecture . 113

5.2 Analysis . 115

5.3 Code Generation and the Java Card Platform 115

5.4 Adding Policies Dynamically .. 120

5.5 Experimental Results . 122

5.5.1 Applet Size . 122

5.5.2 Purchase Card Response Time 124

5.5.3 Code Generation . 125

5.5.4 Conflict Detection . 128

viii

5.6 Summary . 129

6 Security 130

6.1 Trust Relationships . 130

6.2 Attacks Using the Smartcard Platform 132

6.3 Summary . 134

7 Conclusion 135

7.1 Open Issues and Future Work . 135

ix

List of Tables

4.1 The textual elements of the language used to encode policy models 78

4.2 University of Pennsylvania purchase card policy 94

4.3 The policies of the University of Pennsylvania Fuel Card. 96

4.4 Which Penn purchasing card policies can and cannot be encoded as Polaris

policy automata. 97

5.1 Code size for original and modified SET manager applet 122

5.2 Code size for selected policy applets 123

5.3 Conflict checking execution time for various policy models. 128

x

List of Figures

1.1 Smartcards can be as small credit cards (or even smaller). 7

1.2 Cascading policies are integrated in one payment card 8

1.3 Polaris as an access control module compiler 13

4.1 Polaris automata editor .77

4.2 Structure of a policy model .77

4.3 Structure of a policy automaton .. . 79

4.4 Structure of (a) an arrow and (b) a mode 80

4.5 Example payment card policy model 85

4.6 A simple firewall policy model allowing incoming packetsdestined for

port 80 . 88

4.7 A stateful firewall policy automaton allowing incoming response traffic . 89

4.8 A web server access policy automaton protecting image files 90

4.9 Purchase policy automata for (a) rejecting certain classes of merchants, (b)

imposing a per transaction spending limit, and (c) preventing purchases

made at night. 91

4.10 University of Pennsylvania Purchase Card policies encoded as policy au-

tomata (1 of 2) . 100

4.11 University of Pennsylvania Purchase Card policies encoded as policy au-

tomata (2 of 2) . 101

4.12 Modified PC9 automaton that overrides the initial PC9 automaton and al-

lows a $10,000 per month spending limit.102

xi

5.1 Polaris architecture .114

5.2 Polaris code generation process 116

5.3 Java code generated from the emergency policyPE (1 of 2). 118

5.4 Java code generated from the emergency policyPE (2 of 2). 119

5.5 Polaris purchase card response time 123

5.6 Code generation performance on small models 126

5.7 Code generation performance on large models 126

5.8 Code generation performance as a function of model size on small models 127

5.9 Code generation performance as a function model of size on all models . 127

xii

Chapter 1

Introduction

As computer chips get smaller, cheaper and more powerful they are working their way into

everyday items and appliances. This emerging world where everything is equipped with

a computer has enormous potential for offering users new functionality and flexibility.

However, care must be taken to ensure that this new flexibility does more good than harm;

if everything we own is managed by computers then a bug or misconfiguration can have

serious consequences.

TheOpen Embedded Systems(OpEm) project at the University of Pennsylvania (Penn)

(http://securitylab.cis.upenn.edu/opem/)explores the intersection of mod-

ularity, flexibility, dependability and predictability issues that arise when we exploit the

new functionality ofembedded devices—machines, appliances and everyday items aug-

mented with computers. If we want to truly exploit the functionality of these small com-

puters we need to design interfaces that allow users to perform sophisticated configura-

tions, run scripts or even programs on the devices; in other words, the devices must be

modular and flexible. Since embedded systems are often used to protect or manage criti-

cal resources, these configurations, scripts and programs must be well behaved; we need

techniques to ensure they are dependable and predictable.

One concrete example of this need is found in the OpEm group’sproject onpro-

grammable payment cards. Users can add their own payment restrictions to the cards

1

to protect against accidental or malicious use by themselves, friends, children or employ-

ees. A recent Wired News article about the project included comments from a member of

payment card industry:

Tony Mitchell, vice president of public relations with American Express, said

the technology could be a hit with users.

“I’d imagine that some people would want that level of control and flexibility,”

Mitchell said. “It would add another dimension.”

Wired News, November 7, 2003

This flexibility brings risks with it. A user who installs a new payment policy will want

some guarantees about the behavior of the modified card. Willthe new policy really take

effect, or will it be overridden by some other policy? Will the new policy damage the card

or behave in other undesirable ways?

This dissertation addresses this need for flexibility and predictability in one family of

applications: those that control access to a critical resource. In this work we focus on the

programmable payment card application, though we think thetechniques could be applied

in other applications such as IP packet filter rules or database access rules. This work

establishes a formal framework that helps us understand andreason about systems where

new policy rules are added to existing policy rules.

We integrate this formal model with a prototype developmentenvironment, called Po-

laris, to enablemodel-based design—a design paradigm where the same formal model is

used for analysis and as a basis for implementation.

1.1 Modeling Policy Merging and Conflicts

A common task for computer systems is to guard access to a resource. The policy that is

used to grant or deny access is often based on a diverse set of criteria, possibly representing

the interests of many different stakeholders. Describing such a policy as a combination of

2

sub-policies may aid a developer by allowing her to focus on one piece of a policy at a

time. However, when the individual policies are combined there is potential for conflicts

or other interactions that make the combined policy inappropriate for its intended purpose.

Consider three policies regarding the use of a swimming pool. Each policy represents

the interests of a separate stakeholder:Plg is the policy put in place by the lifeguard,Pb is

the policy put in place by the business administrators of thepool, andPc is the policy put

in place by the pool cleaner.

Plg In an emergency no one except the lifeguard can enter the pool. The lifeguard can

always enter the pool. No more than 30 people should be in the pool at one time.

Pb Nobody except the owner can enter the pool between 5pm and 9am.

Pc When 100 people have used the pool, it should be closed and cleaned.

The policies are simple to understand and are modular in the sense that each is solely

concerned with the interests of the respective stakeholder. However, the policies contain

potential conflicts. For example, can the lifeguard enter the pool at 6pm if there were some

kind of emergency? A model-based approach to designing and implementing such policies

will need some mechanism to reason about conflicts among stakeholders’ interests.

Non-monotonic logics[11] are a family of logics in which newinformation may lead to

previously valid conclusions being retracted. These logics are partially motivated by a de-

sire to capture real world common sense reasoning. For example, if we are told that Tweety

is a bird we may tentatively conclude that Tweety can fly. However, if we later learn that

Tweety is a penguin we will be forced retract our conclusion.Non-monotonic logics are

one possible tool for representing and analyzing the kind ofconflicting swimming pool

policies we see above. We can encode a rule such as “no one can enter the pool after 5pm”

by marking it a tentative rule, possibly overridden if we learn more information—for ex-

ample, the lifeguard needs to enter the pool because of an emergency.

The policies described above also have features that are more naturally represented

as a reactive system. The decision to admit a swimmer dependson the previous events

3

at the pool. Imagine a gatekeeper at the pool who has to decidewhen to let people in.

If the gatekeeper cannot see the pool from where she sits she will have to keep track of

how many people have entered and left the pool in order to keepthe number of people in

the pool below 31 (to satisfy the lifeguard) and to stop admitting people when 100 people

have used the pool (so that the pool can be cleaned). So our model must have some notion

of storing information and making decisions based on the history of past events.

Embedded devices like smartcards have minimal space for storing information so it

is undesirable to maintain a complete history of past transactions. However, we do not

want to arbitrarily restrict what information can be used tomake access control decisions;

we should record exactly the minimal amount of information needed by policies. In our

framework we accomplish this by making the security policies responsible for collecting

their own information.

In order to represent state and handle conflicts we propose a hybrid scheme for mod-

eling interacting policies. Our model uses classical finitestate automata, extended with

some high-level constructs like variables, to model how policies react to and store informa-

tion about previous events. We choose automata because theyallow straightforward anal-

ysis and it is simple to translate them into code suitable fora smartcard. These automata

interact with each other using defeasible logic [56], a non-monotonic logic designed so

that statements can be proved or disproved efficiently—an important consideration if the

policies must be integrated in a smartcard with limited computational power. We have

found that this hybrid approach succinctly models many policies that one might want to

install on a programmable payment card.

1.2 Scope of the Work

We have the following goals:

• A succinct formal model that can describe stateful, potentially conflicting policies.

The model should allow us to formally define intuitive properties of policies—for

4

example, conflict-freedom and redundancy.

• Techniques for analyzing this formal model in order to determine whether a given

instance satisfies desirable properties.

• A framework for using this model in model-based design. Thatis, to use this model

as a formal description that is both amenable to analysis anda source language that

can be used to generate an implementation.

• A working implementation of the framework.

1.3 Limitations of the Previous Research

The current state of the art concerning formal models and analysis of security policies

is unsatisfactory for a number of reasons. There has been extensive research in formal

models of computation and formal analysis of those models but we are not aware of any

model that succinctly captures the key features of the interacting policies we would like to

model.

There are formal models of network access control, especially firewall rules, but these

are too restrictive to capture the stateful policies required on a programmable payment

card. Traditional state machine models typically combine state machines by taking a con-

junction of separate state machines and do not model policy interactions and conflicts very

well. Non-monotonic logics can model policy interactions elegantly but are clumsy when

modeling stateful, reactive behavior. Furthermore, most non-monotonic logics are not ob-

viously suitable for a platform with limited computationalpower. We see a need for a new

formalism that efficiently models the behavior and properties of stateful access control

policies.

Existing analysis techniques are also insufficient We couldsimply write our policies

in Java and use existing Java-specific tools (for example, Java editors, type-checkers and

model-checkers) to assure ourselves that our policies willbehave as intended. This is

5

unsatisfactory for the following reasons:

• A policy developer should concentrate on the core functionality of a policy—guarding

access to a resource—instead of worrying about the byte-level manipulations and

system calls required by the Java Card. Developers should work with a more ab-

stract representation of policies.

• General purpose Java tools cannot exploit domain-specific knowledge to make val-

idating a policy more efficient. Nor are general purpose tools aware of the specific

problems that a policy developer is concerned with.

Another approach would be to use an existing special-purpose language that is de-

signed for access policies and is amenable to analysis. We are not aware of any suitable

language; existing policy languages are either not amenable to analysis, or they are too

application-specific to faithfully model the stateful policies we are interested in (for ex-

ample, firewall analysis tools), or they do not handle modular addition or subtraction of

policies, or are not suitable for a limited platform like a smart card.

We overcome these disadvantages by defining a special purpose formal model and

customizing state-of-the-art analysis techniques for this model.

1.4 Applications of the Work

In this section we give a high-level description of an application of our formal model and

the Polaris tool. We also briefly describe some other possible applications of the work.

1.4.1 Programmable Payment Cards

Our primary application is the aforementioned programmable payment card (PPC). A pro-

totype implementation was created by the OpEm group at Penn.This implementation has

been extended to use the policy automata framework described in this dissertation.

6

Figure 1.1: Smartcards can be as small credit cards (or even smaller).

Payment cards are small plastic cards used in commercial transactions—credit cards

(for example, Visa and Mastercard), debit cards (bank ATM cards) and charge cards

(American Express) are used widely today. The declining cost and size of computer chips

has made it feasible to manufacture ‘smartcards’—a card augmented with a small com-

puter. Java Cards are smartcards that have a standard open platform which allows users or

other parties to install small applications called applets.

Programmable payment cards exploit this functionality to enforce purchasing restric-

tions that are more fine-grained than existing credit card systems. Payment cards typically

come with a few basic restrictions; a credit card cannot exceed a credit limit, while a debit

card cannot spend more money than is in the corresponding bank account. However, a

user may want to customize a card to reduce risk or increase convenience. For example,

a user may want to temporarily lower the credit limit on a cardfor budgeting purposes.

Such customizations are especially useful when a card is temporarily delegated to some-

one else. For example, a parent might acquire a credit card and then give it to a child,

or an employer will give a company credit card to an employee to cover travel expenses.

We refer to parties who pass on these payment cards assecondary issuers, and the card

issuing company (such as a bank) is referred to as theprimary issuer. Secondary issuers

7

University of

Pennsylvania

School of Engineering

Computer Science

Department

Smart card

P
1
, P
2

P
3

P
4
, P
5

P
1
|| P
2
 || P
3
 || P
4
|| P
5

installs

installs

installs

Figure 1.2: Cascading policies are integrated in one payment card

usually want to enforce some kind of extra restriction; a parent may want a child to only

use the credit card for emergencies, while an employer may want to forbid the use of the

card for purchasing luxuries.

The programmable payment card allows users to install applets that enforce these re-

strictions. Before an employer or parent gives the card to the recipient the secondary

issuer will install one or more policies on the card. If the recipient attempts to make pur-

chases that violate the policy the card will consult the policies and refuse to authorize the

purchase.

A card can store more than one policy. This is useful for a number of reasons. One

party’s purchasing policy might consist of several independent rules (similar to our swim-

ming pool example) which for the sake of modularity and simplicity are best specified

as independent entities. It also allows the card to be used bya hierarchy of secondary

issuers, each of which adds one or more policies. For example, consider a card issued to

a university, as in Figure 1.2. This card is linked to a particular research grant, which is

administered by the university. It would be handy for a computer science professor to use

this card to purchase lab equipment for research related to the grant, but various parties

want to restrict these purchases to comply with various university, school and departmental

8

policies, as well grant-specific restrictions. Compliancecould be monitored after the pur-

chases are made by checking the monthly bill but after-the-fact enforcement is confusing,

risky and inefficient. Instead, each party in the hierarchy installs the appropriate policy

before passing the card down the hierarchy; the university installs a university-wide pol-

icy, the engineering school installs school-wide policies, and so on, until the card is given

to the professor. The professor may even delegate it to a graduate student after installing

another policy to ensure the student only buys what she has been instructed to buy.

Since these policies are protecting access to a potentiallylarge bank account we would

like to have some guarantees about how policies behave and how one policy affects another

policy.

We propose using policy automata, described in Chapter 3, towrite and analyze these

purchase policies.

The programmable payment card is the main application we areconsidering in this

dissertation. It is the only one for which we have implemented a code generator that will

translate policy models into actual running programs.

1.4.2 Network Access

We believe our formal model of policies is applicable in domains other than programmable

payment cards. The second application we will discuss in this dissertation is network

access.

Firewalls are network devices that examine network traffic arriving at or leaving a

computer or network. A firewall will be configured with rules that state what traffic should

be accepted, forwarded or dropped.

Firewalls are usually configured using vendor-specific configuration files. It is com-

mon, however, to have firewall rules formatted as a list wherethe rules earlier in the list

have precedence over the subsequent rules. In practice, managing a firewall is difficult

and error prone. When a new rule is added it is difficult to knowif the rule is redundant

because other rules override it. We believe that our policy model framework can be used

9

to specify rules in a format that is easier to write, understand and manage.

We also think our framework can model and reason about application-specific access

policies. Web servers allow administrators to specify who is allowed to access a particular

document. We believe that policy automata is an appropriateformalism for representing

access to services like web servers.

1.4.3 Other Applications

We think policy models are an appropriate mechanism for encoding policies in many con-

texts where access control needs to combine multiple policies in an environment where

low computational resources are available (whether due to heavy load or restricted hard-

ware or power). For example, a policy model could be used to determine the maximum

speed in a car based on the car’s recent behavior, the weight being carried and the location

of the car. Some work in the University of Pennsylvania Security Lab has examined how

our model could be used for cellphones that restrict what kind of calls can be made.

Additionally, policy models could be used to describe policies in many general appli-

cations which rely on some form of access control. We envision a developer using Polaris

in a manner that is analogous to the way compiler compilers like Yacc [37] are used; when

a developer wishes to write an access control module for an application the access con-

trol policies will be specified using policy automata which get compiled by Polaris into a

general purpose language.

1.5 Use Cases

The core policy automata framework is a general framework which is intended to be suit-

able for various application domains. In this section we list a few use cases that illustrate

how the framework could be used.

10

1.5.1 Programmable Payment Card

This scenario describes how we envision a developer using the framework to install poli-

cies on a programmable payment card.

A developer wants to add a policy to a programmable payment card. The developer

uses Polaris to create a set of policy automata that implement her desired policy. She

downloads the models for the policies that are already installed on the card. Using Polaris,

the developer checks that her new policies will not introduce conflicts with the existing

policies or with each other. Some potential conflicts are found so the developer alters her

policy automata to avoid the conflict and checks for conflictsagain.

Concerned about the limited memory on the card, the developer checks to see if her

new policy automata are redundant—in other words, whether her new policy automata ac-

tually change the behavior of the card. She discovers that one of her automata is redundant

because she accidentally created a trivial policy automaton that never votes to accept or

reject a request. She rewrites this automaton so that it behaves correctly. She discovers

that another automata is redundant because it duplicates a policy that is already on the

card, so she decides not to install the redundant policy.

She then writes some simple test policy automata in order to validate her new policies.

These test automata are akin to test scripts or a partial specification—they describe how

the policies should behave on a certain classes of input sequences. The developer then

checks whether the test policyPT is redundant with respect to the policiesΠ for which

PT is a partial specification. IfPT is not redundant then the policiesΠ do not satisfy the

partial specification encoded inPT and should be rewritten. Fortunately, all the policies

the developer wants to add to the policy satisfy the partial specifications.

Once she is satisfied that her policy automata are free of conflicts, useful and have the

intended behavior, the developer uses Polaris’ code generation feature to generate Java

Card applets. Each applet implements one of the new policy automata. These applets are

then installed on the card using a standard procedure for adding policy applets. This pro-

cedure registers the new policy applets with the existing transaction processing software

11

on the card, which ensures that the policy applets will be consulted for future transaction

requests.

1.5.2 Firewall Configuration

This scenario describes how the framework would be used to configure the access policy

in a network device.

A firewall administrator creates a set of policy automata, each of which represents

one particular concern of the administrator. For example, one automaton guards against a

denial-of-service attack, while another ensures that outsiders can send mail to a local mail

server.

As in the use case scenario for a programmable payment card, once the administrator

has written automata that cover all of the intended rules foradmitting or rejecting network

packets, she uses the Polaris framework to check for conflicts. She also checks individual

policies to see if they are redundant with respect to the other policies. If they are redundant

she might remove them (to make the firewall rules shorter and simpler) or re-examine

them to see if they really implement the policy she intended.She will also write small

test automata that function as partial specifications of thepolicy, and then verify that her

firewall policies meet the partial specifications.

Once she has validated her policy automata she can compile them to a configuration

file that, when read by the firewall application, enforces thepolicies.

If at a later time the administrator wants to modify a policy she can add or remove a

particular automaton, re-analyze the new policy automata set, and re-compile the automata

into firewall configuration files.

12

.java
 .java

Auto-

mata

file

.java
 .java

Polaris analyzer &

compiler

.java

Java Compiler

.class
 .class
.class
.class
.class

Source

Executable

Figure 1.3: Polaris as an access control module compiler

1.5.3 Access Control Module Compiler

This scenario describes how the framework can be integratedin the development process

of a general software application that includes some accesscontrol functionality. For ex-

ample, assume a developer is implementing a server based enterprise calendar application

which stores users’ calendars. Users will be able to view thecalendars of other users, but

the server must hide particular meetings and other information based on who created the

meeting, who was invited, who is viewing the information, and the topic of the meeting.

An access control module that is written in a general purposeprogramming language

will be difficult to write and understand. Since the languageis not optimized for expressing

policies the programmer will have to worry about low-level implementation details instead

of how the policies interact. A general purpose programminglanguage will also be harder

to analyze for conflicts or redundancy. Instead, the programmer can use policy automata

as a special purpose language for designing an access control policy. The automata will

then be compiled into an appropriate general purpose language so that the access control

functionality can be integrated with the rest of the application. This compile process is

illustrated in Figure 1.3.

13

This is analogous with the use of tools likeparser generators(or compiler compilers)

such asyacc [37] or JavaCC [35]. If an application needs to incorporate some pars-

ing functionality, a developer will create a file that describes the intended parser using a

special syntax (usually the relevant grammar annotated with extra information). This spe-

cial syntax can be checked for problems specific to parsers, and it can be compiled into a

general purpose programming language implementation of the parser.

In our case, a developer creates a set of policy automata using Polaris. The devel-

oper performs appropriate validation steps on the automatausing the kinds of analysis

described in the previous sections—checking for conflicts,redundancy, verifying that the

test automata are redundant. Once the developer is satisfiedwith the results of the anal-

ysis, she uses Polaris to compile the automata into a set of Java classes. These classes

include an implementation of the policy automata, code to resolve the automata’s votes,

and interfaces that allow data from the other modules of the application to be conveyed to

the policy resolution module.

1.6 Contributions

This dissertation is the first thorough examination of a programmable payment card—a

smartcard capable of holding and enforcing multiple modular purchasing policies. Build-

ing on the application and architecture developed by the author and others in the OpEm

group[22], this dissertation explores the application using a variety of approaches: a for-

mal analysis of the application, an effective language to encode realistic policies, and an

implementation of the application as well as a tools for supporting the application.

In our formal examination of the application we proposedpolicy automata, a new

formal model of modular access control policies which depend on the history of past

transactions. Policy automata resolve conflicts through a voting mechanism which is based

on defeasible logic. Information about the transaction history is kept as local state by each

policy. Policy automata is a unique formal model of policy integration, and is the first

14

model to combine state machines with defeasible logic.

This model can be seen as an extension of the security automata formalism of Schnei-

der [60] and Ligatti et al.[41]. We have extended this work bydefining a new form of

enforcement that is appropriate for our application, and proved that suppression automata

can enforce exactly the class of safety properties using this form of enforcement. We also

extended the work by identifying the problem of building suppression automata through

composition—a problem that is solved by composing policy automata which collaborate

through our voting mechanism.

Using this model, we have defined formal properties of payment card policies like

conflict and redundancy that correspond to useful real-world properties. We have proposed

algorithms to check these properties.

In addition to our formal results, we have demonstrated thatour formal model can

effectively represent real-world purchase policies. In Chapter 4 we show that ten of the

twelve purchasing card policies used for the University of Pennsylvania purchase card

can be encoded as policy automata. We also demonstrate how our voting mechanism can

concisely encode policies which would be cumbersome or impossible with other voting

mechanisms.

Finally, we have demonstrated the practicality of our proposed model-based design

approach to managing programmable purchase cards by implementing Polaris, a working

system for integrating and enforcing payment policies. This implementation enables a

policy developer to create policies using an abstract model, convert that model to Java

Card applets, and then integrate and run those applets so that they enforce the relevant

purchase policies. This implementation includes the first smartcard implementation of a

defeasible logic inference algorithm, and we have adapted the known inference algorithm

in order to reduce the use of RAM and take advantage of the slower but cheaper EEPROM

memory available on the Java Card platform.

Our experimental results show that our system offers acceptable performance for im-

plementing realistic policies, for both a policy designer who wants to analyze or compile

15

policies and a cardholder who wants to purchase items without undue delay during the

purchase.

1.7 Structure of the Dissertation

The next chapter gives an overview of the technology and previous research which we

have used in this work, as well as other approaches that have been used to solve similar

problems. Chapter 3 gives a formal analysis of the application, including a model of se-

curity policies. It proposes policy automata as a mechanismfor enforcing the policies and

describes some formal properties of policy automata. Chapter 4 describes the language

we use to easily encode policies and illustrates its expressiveness by showing how a range

of realistic policies, including policies drawn from the University of Pennsylvania pur-

chasing rules, can be effectively encoded. Chapter 5 describes our implementation of the

Polaris system, which includes an editor, code generator, analysis algorithm and on-card

policy management software. Chapter 6 describes some of thesecurity issues raised by

our system, including the assumptions we need to consider our system secure. Chapter 7

concludes the dissertation and discusses some open issues and possible future research

directions.

16

Chapter 2

Background

This work builds on an extensive history of research in automata theory, formal methods,

model checking, security policies and non-monotonic logic. In this chapter we survey

some of the literature that is related to our work.

2.1 Automata Theory

Our policy automata are based on classical finite state systems like finite automata and

regular expressions. Literature on finite state systems extends back to the 1940s in work

by McCulloch and Pitts [53]. Finite state systems are discussed in standard theory of

computation textbooks such as Hopcroft and Ullman’s [30], which also includes discus-

sion of composing automata to create new automata (for example, the construction of an

automaton that recognizes the intersection of two regular languages). In Section 3.6.1 we

compare our formal model to Mealy machines [30], a classicalvariation of finite automata

that writes a sequence of symbols to output instead of simplyaccepting or rejecting like a

finite automaton.

Using state-machine-based models for high-level designs is quite common in software

engineering (e.g. Statecharts [25], UML [9]). These modelsoften extend classical fi-

nite state automata by adding variables and other high-level language features. Our work

17

on policy automata, especially the Polaris environment forcreating automata, is partly

inspired by the adoption of these models.

The voting mechanism that we use for composing the decisionsby individual policy

automata is unusual compared to most languages and formal models of computation, but

it is similar to howcombined valued signalswork in the reactive language Esterel [7].

In Esterel, signals are a form of instantaneous output.Valuedsignals contain some data.

Since a signal is instantaneous, if two different parts of a program both emit a valued

signal there needs to be some way to resolve the two or more signals into a single signal.

An Esterel programmer must specify a binary operator like addition, conjunction, or even

some programmer-defined operator. If multiple modules emita signal the actual signal

emitted (that is, seen by the environment and other parts of the program) is the result of

applying the operator to all the signals. For example, a signal can be declared as:

output MySignal := 0: combine integer with +;

which indicates thatMySignal is a signal containing an integer, and multiple signal

emissions will be combined using the addition operator. If aprogram had statements

“emit MySignal(2) ” and “emit MySignal(3) ” thenMySignal would take on

the value 5. We could also specify a custom operator as follows:

output MyOtherSignal

:= 0: combine integer with CustomOp;

whereCustomOp is an arbitrary binary operator implemented in another language.

2.2 Formal Methods and Model Checking

This work builds on a wide range of previous work in formal methods [16], especially

in model-checking [15] techniques. One example of a mature model checking tool is

SPIN [29], which explores the reachable states of a system byperforming a depth-first-

search of the execution paths of the system.

18

Hermes [2, 3] uses a language in which state-machines are extended with scoped vari-

ables, exceptions, data structures and code re-use. A system is specified using a hierar-

chical graphical language. Hermes has enumerative and symbolic state search algorithms

which are optimized to exploit the hierarchical structure of a system. For example, if a

procedure is called from multiple locations in the system then, when searching the pos-

sible execution paths, Hermes will attempt to re-use information about the procedure. If

the procedure was called in one context then subsequent calls from other contexts will not

trigger another search of the procedure. Hermes also conserves memory by ignoring state

information that is not relevant at a given program location—for example, if a variable is

out of scope at a location in the program then the memory used to track that variable can

be used for other data. Polaris uses much of Hermes’ code for manipulating, saving and

type-checking state-machine-based languages.

2.2.1 Models with Logic Extensions

There is some formal methods work which combines non-traditional logics and state-

machine-based models. Easterbrook and Chechik [14] analyze merged state machines

by using paraconsistent logics to capture the possibly inconsistent views of the system.

Siddiqi and Atlee [61] use a hybrid model that combines state-transitions and logical as-

sertions to model and analyze feature interaction conflictsin telephone systems. Hay and

Atlee [26] define composition operators that allow labeled transition systems to execute

in parallel without conflicts, possibly by overriding the effects of low-priority transitions.

Neither approaches are obviously suitable for modeling andanalyzing the policies of the

type we model using policy automata.

2.2.2 Formal Methods for Java

This work was partly inspired by the need to reason about the behavior of policy ap-

plets that were written for the OpEm Programmable Purchase Card project [22]. We have

19

chosen a model-based approach in which we use a high level model to describe the policy

applet’s behavior and rely on automated tools to generate executable code from the model.

An alternate approach would be to check the behavior of the applets using a formal meth-

ods tool for Java. Even with our model-based approach there is a possible role for such

tools to check properties of imported functions—we discussthis issue in Section 4.1.2.

The Java Modeling Language (JML) is a standard for annotating Java source with

special comments that express properties of the code. Toolslike the LOOP compiler [70],

the Extended Static Checker for Java (ESC/Java) [18] and ESC/Java(2) [32] can check that

the code actually satisfies the properties specified in JML. [12] gives an overview of JML

and its tools.

The Bandera project [68] develops tools for validating Javaprograms by writing spec-

ifications and then verifying those specifications using model-checking and static analysis

techniques. NASA’s Java Pathfinder tool [71] uses model-checking to find runtime errors

like uncaught exceptions, deadlocks and violated assertions.

2.3 Non-monotonic Logic

A non-monotonic logicis an extension of traditional logic that models the non-monotonic

reasoning that is common in the real world. In traditional logic we make conclusions based

on known facts. If new information is added to the system the conclusions that we have

already made are still valid. Traditional logic is therefore monotonic; new facts can only

lead to new conclusions. In non-monotonic logic new information may force us to retract

conclusions. In Chapter 1 we have already mentioned a standard example: most birds fly,

so if we are told that Tweety is a bird then we can tentatively conclude that Tweety can

fly. However, if we later learn that Tweety is a penguin we willbe forced to retract our

conclusion that Tweety flies.

The family of non-monotonic logics contains many differentformalisms of non-mo-

notonic reasoning. Brewka et al. give an overview of the various approaches in [11]. Here

20

we mention the formalisms that are most related to our votingsystem.

At the end of the 1970s a number of non-monotonic reasoning systems were first

proposed. Reiter [59] proposeddefault logic, which extends traditional logic by extending

the known facts of a theory with a set of defaults of the form

A : B1, . . . , Bn

C

whereA, B1, . . . , Bn, C are all classical formulas. The default is interpreted as follows: if

A is provable and¬Bi is not provable for alli = 1, . . . , n then we can concludeC. For

example, we can write a default expressing the notion that birds can usually fly as

bird(x) : flies(x)

flies(x)

In plain English, this default says that we can conclude thata given bird can fly unless we

have evidence that it cannot fly (that is, unless¬flies(x) is provable). We can write a more

specific default as
bird(x) : flies(x), hasWings(x)

flies(x)

This states states that ifx is a bird and we have no reason to believe thex cannot fly, and

we have no evidence that thex has no wings, then we can concludex flies.

In a default logic theory the set of facts is extended by applying defaults to generate

new conclusions. These new conclusions may then make other defaults applicable. Ap-

plying defaults until a the set of facts reaches a fixed point gives us anextension. The

inferences of a theory are those formulas which are contained in all possible extensions.

A similar non-monotonic formalism ismaximal consistency logic[58]. In maximal

consistency logic, classical logic premises are sorted by priority. For example, we can

write our running example as

p1 : bird(x) ⇒ flies(x)

p2 : penguin(x) ⇒ ¬flies(x)

p3 : bird(x) ∧ penguin(x)

21

wherep3 > p2 > p1. Sincep2 > p1 we should ‘prefer’ conclusions that rely onp2 over

those that rely onp1.

Both default logic and maximal consistency logic are expressive enough to describe

a variety of complex policies where some sub-policies deferto other higher priority sub-

policies. Unfortunately, computing inference for these logics involves computation inten-

sive operations like computing fixed-points and choosing among many chains of reason-

ings (for example, checking inference in default logic is not even in NP [13]). This makes

them undesirable for resource-constrained devices like smart cards and many network de-

vices. It also makes analysis more difficult.

To work around this problem of intractability we choose Nute’s defeasible logic[56],

which is a pared-down non-monotonic logic that is designed for efficiency. It differs from

the approaches described above in that it only contains literals and inference rules about

literals. This makes inference much easier to compute; [47]gives a linear time algorithm.

A detailed introduction to defeasible logic is given in Section 3.3.2.

Non-monotonic logics often give paradoxical or non-intuitive results. This is espe-

cially undesirable for use in modeling security policies, where a mistake in the policy can

lead to security breaches. To mitigate this problem we isolate the defeasible logic from

the state update operations of our policy by restricting thelogic to the voting system.

2.4 Policy Languages

Various policy specification languages have been proposed.Damianou et al. [17] use the

Ponder language to describe access control policies. Hoagland et al. [28] use a graphical

language to describe security policies. Both of these approaches target a wide range of

access control applications and it is not clear how amenablethe languages are to analysis.

Lupu and Sloman [42] discuss a number of strategies for resolving policy conflicts,

including assigning explicit priorities to policies, choosing policies that are ‘closer’ to

the subject of the policy, or defaulting to denying permission. For each choice they give

22

examples where the strategy is problematic.

There is related work using non-monotonic logics for reasoning about policies. Grosof

et al. [21] represent business rules using courteous logic programs, while Antoniou et

al. [4] use defeasible logic to represent administrative regulations governing, for exam-

ple, exam scheduling. These approaches encode the entire policy as statements of non-

monotonic logic statements; in contrast, we isolate the logic part of our model in the voting

mechanism, and update state and choose votes using pure state-machine mechanisms. As

discussed in the previous section, this separation is motivated by the desire to use a for-

malism where it is most appropriate; defeasible logic is effective at resolving conflicts,

while state machines are effective at recording state. We were concerned that encoding a

policy entirely in defeasible logic would increase the chance of design errors, since non-

monotonic logics are prone to paradoxes and are unfamiliar even to many programmers,

let alone people who design policies. This separation also allows us to treat the voting

mechanism as a parameter in our framework—if another votingmechanism is preferred

much of the formal results and implementation described in this dissertation would still be

applicable.

Miro [27] uses a graphical language, allows policies to override other policies, and

analyzes policies, but it is targeted at file system security.

Halpern and Weissman [24] propose using a fragment of first-order logic called Lithium

as a security policy model which accommodates merged policies and has a tractable al-

gorithm to determine access rights. The restrictions that ensure tractability guarantee that

the merged policies are consistent. Like our policy model formalism, Lithium is designed

to be efficient and handle policy composition. Lithium assumes an environment of facts

that are available to the policy engine, while our policy automata update their own state to

record the information relevant to their decisions. We chose this strategy primarily because

we wanted to avoid storing extraneous data about past transactions since the smart card

platform has so little memory available. We were also motivated by a desire to preserve

a very simple interface between a policy enforcer program and whatever system manages

23

transactions—this interface would be more complex if policies had to query this system

to make policy decisions.

Stoller and Liu [63] propose a technique that takes a trust management policy de-

scribed in Datalog and generates a lightweight implementation that checks the policy,

allowing the use of such policies in resource-constrained contexts like embedded systems.

A security policy framework has two components: a policy language and an algorithm

which, given a policy and a request for service (for example,a request to enter a build-

ing), checks whether the request satisfies the policy. One can choose a policy language

so that there is an algorithm with which any request can be checked against any policy

efficiently. Instead, Stoller and Liu suggest optimizing the algorithm for a specific policy

(which presumably changes only infrequently) so that the policy-specific algorithm can

check requests efficiently.

2.5 Security Automata

Schneider [60] usessecurity automatato model access control policies and generate mon-

itors that enforce correct behavior. Policies are treated as predicates on sets of traces, and

Schneider identifies a subset of policies which can be enforced by automata-based runtime

monitors.

Ligatti et al. [41] extend this work by generalizing Schneider’s automata to include

automata which block bad actions or fill in missing actions. They show how these new

automata differ from Schneider’s automata with respect to the formal definition of policy

used in [60].

The policy automata formalism proposed in this dissertation can be seen as an adapta-

tion and extension of this line of research; our policy models are effectively the same as

the automata which block forbidden actions—in our case, undesirable transactions. We

adapt this line of work by showing how the formal definitions effectively model a concrete

24

application—the programmable purchase card. We give an effective method for compos-

ing automata, since the composition technique proposed in [60] does not generalize to

the automata of [41]. Such a technique is important because policies are much easier to

understand and modify if they can be broken into smaller sub-policies; any policy enforce-

ment mechanism that can handle the large lists of policies that a real enterprise require will

need to be able to compose policies. Sections 3.1 and 3.2 discuss the relevant aspects of

the security automata work in detail.

Fong [19] classifies security automata by the amount of statethey keep and examines

how such limits impact the policies they can enforce.

2.6 Java Card

Java Card [54] is a standard open platform designed to run on asmartcard. A Java Card

compliant smartcard has a small virtual machine which runs applets which are written in

a version of Java [5] adapted for low-resource environments.

The platform is described in specifications [64, 66, 65] thatare available for free on-

line. These specifications leave open many of the details of dynamically installing applets.

The GlobalPlatform standard [20] fills in many of the detailsregarding the management

of multiple applications on a single smart card.

Lyubich [45, 43, 44, 46] has implemented the Secure Electronic Transaction (SET)

protocol [49, 50, 51, 52], a secure purchase protocol, on a Java Card. This software has

been extended by the OpEm group at University of Pennsylvania [22] to implement a

prototype of the programmable payment card application, where the user can install ap-

plets that approve or reject transactions before the transaction takes place. We extend this

OpEm implementation for some of our experimental results inChapter 5.

The Java Card designers recognized the dangers of letting users install arbitrary ap-

plets. A Java Card virtual machine (VM) must enforceapplet firewalls, a mechanism for

25

preventing objects from one applet manipulating objects inother applets. Java Card ap-

plets are also required to respect the Java’s strong typing scheme, but verifying applets

are well-typed has traditionally been performed off-card,since the verification has been

assumed to require too much memory. Leroy [39] has proposed amodified applet format

and algorithm that can be executed on card, removing the needto trust the compiler that

generated an applet.

2.6.1 Formal Analysis Work on Java Cards

In recent years, there has been a lot of research on formal methods for Java cards, espe-

cially by the VerifiCard project [34]. Much of this work uses the JML tools mentioned

in [12]. This research typically focuses on proving correctness of protocols and API im-

plementation, or ensuring that applets behave as specified [10]. To our knowledge, the

problem of adding policies dynamically and merging them with existing policies has not

been addressed beyond verifying that an applet respects theconstraints of the Java Card

platform.

2.7 Network Access Policies

Guttman’sfiltering postureswork [23] and the Firmato tool [6] of Bartal et al. use domain

specific high-level languages to describe firewall policiesfor a set of networked comput-

ers. The languages are specific to firewall rules and do not describe stateful policies that

react to the history of arriving packets. These approaches are also directed at distributed

policies, while our approach focuses on the policies of a single device. While Firmato

does not perform any formal analysis on the models of firewalls, Guttman presents an

algorithm for checking that the distributed firewall implementation satisfies a high level

policy. Neither approach treats policies as independent modules with priorities that change

according to circumstance.

We think it is possible that these approaches could be combined with our formalism.

26

In such an approach policies would be described using policyautomata instead of simple

pattern matching on packets (for example, packets going to port 80 at address 1.2.3.4),

while the algorithms and language for managing multiple network devices would remain

mostly unchanged.

In addition to Guttman’s work, there are several tools that analyze firewall rules. For

example, Wool’s Lumeta firewall analyzer [72] generates a list of all traffic that a firewall

permits, and highlights common firewall configuration errors. This tool only analyzes

static firewall configurations and can not therefore handle the stateful policies we model

with our formal framework.

27

Chapter 3

Formal Framework

In this chapter we analyze the programmable payment card application formally. We begin

by introducing thesecurity automatawork of Schneider[60] as a basis for a formal un-

derstanding what a payment card policy is. We go on to discusswhat it means to enforce

such policies, introducing a new notion of enforcement appropriate for our application.

We show howsuppression automata, introduced by Ligatti et. al[41], are capable of en-

forcing a class of policies, but lack an effective composition mechanism that would allow a

policy designer to construct complex enforcement mechanisms from simpler mechanisms.

To solve this problem, we introduce a new formal model calledpolicy automata, which

combines state machines with a voting mechanism based on defeasible logic to effectively

and succinctly model payment card policies. We discuss the semantics of the policy au-

tomata model and define some properties of policy automata that would be of interest to a

policy designer. We also present some algorithms and techniques for checking that a set of

policy automata satisfy such properties. Finally, we characterize the expressiveness of our

new model by discussing what can and cannot be modeled, and bycomparing the model

to classical models of computation.

28

3.1 General Policies

Schneider[60] investigated the properties of formal definitions of security policies. This

work concentrated on policies that can be enforced by a run-time monitor—for example, a

monitor that wraps untrusted mobile code so that it cannot harm the environment in which

it is being executed. Such a monitor could watch a program andblock any attempt to send

information on a network after a disk has been read. Schneider proposedsecurity automata

as a formal model of enforcement mechanisms. This work was later extended by Ligatti et

al.[41], who examined automata with extra capabilities. The security automata framework

is general enough to be applied to our programmable payment card application where we

want to protect financial resources like a bank account from auser is only partially trusted.

In this section we present the aspects of the security automata framework that are rele-

vant to our application, adapting the examples and properties to our particular application.

We follow the presentation in [41].

3.1.1 Security Policies

Let T be a finite set of events. We writeT ∗ for the set of finite-length sequences of events

in T . A security policyis a predicate on sets of event traces. In other words, a set oftraces

Σ ⊂ T ∗ satisfies security policyP if and only if P (Σ).

In our case, the set of events is the set of possible transactions a user attempts to make.

For example, an event could be “buy one gallon of paint from Home Depot for $30 at

11am on November 2, 2004”.

We use the following notation for sequences: We write the empty sequence as·, and

use the notationσ; τ to denote the concatenation of sequencesσ andτ . We writeσ[..i] for

thei-length prefix ofσ, andσ[i..] for the sequence that includes thei-th element ofσ and

all subsequent elements. Thereforeσ = σ[..i]; σ[(i + 1)..].

The set of security policies defined above is broad enough to capture policies like non-

interference: given two eventsa, b ∈ T , we may require that the appearance of an eventa

29

yields no information about whether eventb appears in a trace. In other words, the policy

is true for a setΣ ⊂ T ∗ if b never appears in a trace inΣ or some traces have botha andb

while others haveb withouta. In the context of mobile codeb may be an event visible to

outsiders whilea occurs when the last bit of a secret key is 1. If the policy holds then an

observer who seesb cannot infer anything about the value of the secret key. In the context

of payment cards such a policy could be used to prevent corruption. Eventa may denote

the cardholder receiving a payment (for example, an election campaign contribution) from

a merchant, whileb denotes the cardholder buying a large item from the merchant. The

paymenta may be an innocuous event or it may be a bribe to secure the cardholder’s future

business. If the eventb is independent ofa then we can be confident thata was not a bribe.

Another policy could enforce a credit limit on a credit card.Let the eventai denote

spending$i on an item wherei could range from 1 to 100. A policy to enforce a $50 credit

limit would have the following predicate:

P = {σ ∈ T ∗.
∑

ai∈σ

i < 50}

3.1.2 Policy Classes

Alpern and Schneider[1] identify a subset of security policies which are calledproperties.

A property is a policy that can be identified by looking at eachexecution trace without

referring to other possible traces. Formally, a policyP is apropertyif there is a predicate

P̂ over traces such that

P (Σ) = ∀σ ∈ Σ.P̂ (σ) (3.1)

Note that our non-interference policy is not a property; we can not tell if the sequence

a; b is permitted without checking to see if there is another sequence with ab but noa

in Σ. (The non-interference policy needs to reason about different possible traces and

is therefore reminiscent of branching-time temporal logics, which can reason about the

existence of different execution paths starting from a common state. In contrast, a property

necessarily focuses on a single trace and is therefore reminiscent of linear-time temporal

30

logics. In fact, the termproperty comes from the literature on linear-time concurrent

program verification.) A predicatêP on traces induces a propertyP on sets of traces so

when we refer tôP as a property we mean the induced propertyP that satisfies (3.1). Our

credit limit policy is a property, as the total money spent inone trace does not depend on

the other traces accepted by the predicate.

A safety propertyis a propertyP̂ such that

∀σ ∈ T ∗[¬P̂ (σ) ⇒ ∀τ ∈ T ∗.¬P̂ (σ; τ)] (3.2)

There are properties that are not safety properties. For example, a policy may require

that every time a cardholder borrows money—eventb—the cardholder eventually pays

the money back—eventp. This policy is a property; one can check that a given trace

obeys the policy without examining other traces. However, the sequenceb violates the

policy (the money is borrowed without being paid back) whilethe sequenceb; p obeys the

property. If we setσ = b andτ = p then we see that (3.2) is not satisfied. Intuitively, a

safety property is a property that can be verified by looking at a finite prefix of the trace—

we do not have to wait to see if some event occurs later in the trace which will change a

bad trace into a permitted trace.

3.1.3 Enforcing Policies

Schneider introduced security automata as a mechanism for enforcing policies. These

automata read a series of events emitted by a target program and if they detect a policy

violation they terminate the target program. Ligatti et al.generalized these automata,

defining additional automata classes which can remove events, insert events, or do both.

The first of Ligatti’s classes, calledsuppression automata, is of special interest to this

work, as it is an appropriate model for a payment card monitor.

Formally, a security automaton is a deterministic finite or countably infinite state ma-

chine(Q, q0, ∆). Q is the set of states of the machine. The initial state isq0. Thetransition

function∆ specifies how the automaton reacts to its input—∆ varies for different types of

31

automata, and will be specified in detail below. The automaton reacts to input in a series of

steps of the form(σ, q)
τ
→ (σ′, q′) whereσ is the sequence of events that the target wishes

to execute andq is the state of the automaton before the step is taken;σ′ is the sequence

of events waiting to be executed after the step andq′ is the state of the automaton after the

step;τ ∈ T ∗ is a sequence of events which take place during the step. Onlythe events in

τ are observable—these are the only events which actually impact the environment. For

example, in a programmable payment card, the observable events are those transactions

which take place. We write(σ, q)
τ
⇒ (σ′, q′) to denote zero or more steps yielding output

τ .

Ligatti [41] identifies two abstract principles for effectively enforcing a property:

SoundnessAn enforcement mechanism must ensure that all observable outputs obey the

property.

Transparency An enforcement mechanism must preserve the semantics of executions

that already obey the property in question.

These principles take a fairly liberal view of enforcing policies. Consider an enforce-

ment mechanism which outputs no events for an input that violates a policy. Such a

enforcement mechanism would satisfy both principles, but such draconian enforcement

would not be satisfactory in a programmable payment card context, where a cardholder

who accidentally violates a policy would like to be able to continue making valid pur-

chases. We therefore add the following (imprecise) principle:

Minimality An enforcement mechanism must ensure that observable outputs differ from

the input as little as possible.

This principle will be made precise below.

Ligatti et al. formalize the soundness and transparency principles as follows:

Definition: An automatonA with starting stateq0 precisely enforcesa propertyP̂ on the

system with event setT if and only if ∀σ ∈ T ∗, ∃q′ ∈ Q ∃σ′ ∈ T ∗ such that

32

1. (σ, q0)
σ′

⇒ (·, q′),

2. P̂ (σ′), and

3. P̂ (σ) ⇒ ∀i ∃q′′. (σ, q0)
σ[..i]
⇒ (σ[i + 1..], q′′)

An automaton that precisely enforces a property will acceptany input sequence that satis-

fies the property and output the same sequence of events. Furthermore, if a property does

not satisfy a property the automaton will output a sequence of events that does satisfy the

property. Additionally, the automaton works in lockstep with the target on a valid input:

every time the automaton reads an input event it outputs the same event.

Precise enforcement ensures soundness (only valid output sequences are produced)

and transparency (a valid input sequence will simply be copied to output). However,

precise enforcement puts no restrictions on the behavior ofan automaton given an invalid

input sequence. AssumeT = {a, b} and assume that propertŷPb requires that eventb

never occurs. Consider the automatonAb with the following behavior:

• (a; σ, q0)
a
→ (σ, q0)

• (b; σ, q0)
·
→ (·, q0)

Ab terminates as soon as the firstb is seen. If nob events are seen then the automaton

simply copies the inputa event to output. The automaton therefore precisely enforces

P̂b. However, given sequenceabaa the automaton will only outputa and then halt, when

outputtingaaa would satisfy the property and be, in some sense, closer to the target’s

intended execution trace. The automaton does not satisfy the minimality principle.

3.1.4 Suppression Automata

Ligatti et al. examine a family of automata that can enforce policies. They classify au-

tomata into four families:truncation automata, suppression automata, insertion automata

andedit automata. As only the first two are required in this discussion we will ignore in-

sertion automata and edit automata. Interested readers cansee the details in [41].

33

A truncation automatonis a security automaton specified by(Q, q0, δ) where, as in

the case for security automata,Q is a finite or countable set of states, andq0 is the initial

state. The transition function is a partial functionδ : T × Q → Q that specifies how the

automaton reacts to input. The truncation automaton updates its state as follows:

• (a; σ, q)
a
→ (σ, q′) if δ(a, q) = q′

• (σ, q)
·
→ (·, q) otherwise.

The automaton copies input events to output so long asδ is defined on the current state

and input event. When a state and input event is reached for which δ is not defined the

automaton halts, terminating the target.

While a truncation automaton enforces a policy by terminating a target, asuppression

automatonenforces a policy by blocking certain actions. More formally, a suppression

automaton has four components(Q, q0, δ, ω), whereQ andq0 have the same definition as

in a truncation automaton, andδ is again a partial functionδ : T × Q → Q. The partial

functionω : T × Q → {0, 1} specifies whether an input event should be copied to output

(1) or suppressed (0). The possible single steps of a suppression automata are:

• (a; σ, q)
a
→ (σ, q′) if δ(a, q) = q′ andω(a, q) = 1.

• (a; σ, q)
·
→ (σ, q′) if δ(a, q) = q′ andω(a, q) = 0.

• (a; σ, q)
·
→ (·, q) otherwise.

Ligatti et al. showed that truncation automata can precisely enforce a property if and

only if the policy is a safety property. Perhaps surprisingly, the ability of a suppression au-

tomaton to selectively block events rather than halt execution does not allow suppression

automata to precisely enforce any more properties than truncation automata. A suppres-

sion automaton can also precisely enforce a property if and only if the property is a safety

property1.

1Ligatti et al. show that if we allow an automaton to change a valid input sequence into a different

34

Recall our propertŷPb which requires that eventb never be observed. If the monitoring

target is a piece of untrusted mobile code then it may be reasonable to halt the target when

the forbidden event is encountered. However, if the monitoring target is a programmable

payment card holder and eventb denotes a purchase of a forbidden item it seems natural to

let the cardholder continue making purchases even though anattempt was made (perhaps

accidentally) to violate the purchase policy. For example,the University of Pennsylvania

purchasing policy says that (among other restrictions) boxlunches can be bought with the

corporate card but bottled water cannot. Given that it wouldsimple to forget small details

of such a complex policy, blocking all purchases after any violation seems too draconian.

A suppression automaton has the option of permitting purchases after denying a purchase.

Let Sb be the suppression automaton with the following possible steps:

• (a; σ, q)
a
→ (σ, q)

• (b; σ, q)
·
→ (σ, q)

On inputabaa our truncation automatonAb simply outputsa. The suppression automaton

Sb outputsaaa—a sequence much ‘closer’ to the input sequence. In some sense, this

makes suppression automata a more powerful class of security automata, since, in addition

to soundness and transparency, they can satisfy our minimality principle. We make this

precise below.

We would like a formal definition of a type of enforcement thatcaptures this sense that

suppression automata are a ‘better’ enforcement mechanismthan truncation automata. We

do so using an abstract partial order, and then investigate two candidate partial orders.

An approval sequenceis a finite-length binary sequenceβ ∈ {0, 1}∗. We define an

operator⊗ : T n×{0, 1}n → T ∗ that removes events in a sequence when the corresponding

but semantically equivalent output sequence then suppression automata are more powerful than truncation
automata. If we were willing to let our cards behave more as agents who are permitted to split a single
transaction into multiple transactions, switch a purchasefrom one merchant to another similar merchant,
or otherwise manipulate transactions, then semantic equivalence of transactions output sequences would
applicable to programmable payment cards. However, we suspect users would uncomfortable with such
functionality and would allow cards to perform a very minimal amount of manipulation at most. In this
work we therefore concentrate on automata which are limitedto blocking transaction requests.

35

element in the approval sequence is a 0. Formally,

(a; σ) ⊗ (1; β) = a; (σ ⊗ β)

(a; σ) ⊗ (0; β) = (σ ⊗ β)

For example,abaab ⊗ 10011 = aab, abc ⊗ 011 = bc. Essentially, the⊗ operator selects a

subsequence of an event sequence. Note thatσ ⊗ 1|σ| = σ.

Given a partial ordering≺ of approval sequences, an automatonA ≺-gracefully en-

forcesa propertyP̂ if and only if

• A precisely enforceŝP , and

• if (σ, q0)
σ′

⇒ (·, q′) then∃β ∈ {0, 1}∗. σ ⊗ β = σ′ ∧ P̂ (σ ⊗ β ′) ⇒ β ′ 6≺ β

(Note thatβ andβ ′ are necessarily the same length in the above definition.) Informally,

an automaton gracefully enforces a property if it preciselyenforces a property and if the

input sequence violates the property, the automaton suppresses just enough events to make

the input sequence valid. If there is some other subsequenceof events that can be removed

to make the event sequence valid, then that subsequence is nosmaller (according to our

partial order) than the subsequence chosen by the automaton. We can view this as a target’s

desired sequence of events degrades gracefully when it violates a property.

One obvious candidate for a partial order is to order approval sequences by the number

of 0’s in the sequences; intuitively, the less rejected events the better the automaton. Let

≺# be the partial order such thatβ ≺# β ′ if and only if β contains fewer 0s thanβ ′. Note

that 1n is the minimal sequence of lengthn, which corresponds to our intuitive notion

that we want to approve everything we can safely approve. However, there are simple

properties which cannot be≺#-gracefully enforced by a suppression automaton.

Claim 1 There is a property that cannot be≺#-gracefully enforced by a suppression

automaton.

36

Proof. Consider a set of eventsT = {1, 2, 3} representing the number of dollars spent

in a transaction and a property which requires that no more than $4 be spent in total.

AssumeA is a suppression automaton that≺#-gracefully enforces the property.

The event sequence 1;3 does not violate the property, so sinceA precisely enforces the

propertyA must simply copy the input events to output. The first 2 steps of A’s execution

on 1;3 are(1; 3, q0)
1
→ (3, q1)

3
→ (·, q2).

If cardholder attempts to make the following sequence of purchases 1;3;1;1 then the

minimal possible approval sequence (using the≺# ordering) is 1;0;1;1. However,A’s next

step depends entirely on the current state and the next inputevent. So the first two steps

of A’s execution will be identical to the steps listed above:(1; 3; σ, q0)
1
→ (3; σ, q1)

3
→

(σ, q2). Which meansA does not induce the 1;0;1;1 approval sequence, which therefore

meansA does not≺#-gracefully enforce the property.

Obviously the≺# partial order does not yield a reasonable definition of graceful

enforcement; it requires an automaton to select a minimal but valid approval sequence

that may depend on values of the input sequence which are not immediately available—

something which is impossible for some properties. There are other more practical rea-

sons to object to such enforcement; a cardholder who tries topurchase an item that will

not break his credit limit would probably be upset if his cardrejected the purchase in order

to approve two or more later purchases.

We define a more practical partial order≺l which uses an ordering similar to lexico-

graphic ordering. The order is defined as follows:

• 1 ≺l 0

• 1; σ ≺l 0; σ′

• σ ≺l σ′ ⇒ 1; σ ≺l 1; σ′ ∧ 0; σ ≺l 0; σ′

Informally, approving the first event is more minimal than rejecting the first event. If

two approval streams agree on the first event then we order them by whatever order is

37

implied by comparing the streams without the first element. Once again,1n is the minimal

sequence of lengthn.

Theorem 2 Any safety propertŷP has a corresponding suppression automaton that can

≺l-gracefully enforcêP .

Proof. The proof extends the proof of Ligatti et al. [41] that shows that every safety

property can be precisely enforced by a truncation automaton.

We construct a suppression automaton that≺l-gracefully enforceŝP as follows:

• States:q ∈ T ∗ (the sequence of events seen so far). To distinguish betweense-

quences and states representing sequences we writeσ for the state representing se-

quenceσ.

• Start state:q0 = · (the state representing the empty sequence)

• Transition functionδ and the approval functionω: In stateσ if we see input eventa

then

– If P̂ (σ; a) thenω(a, σ) = 1 andδ(a, σ) = σ; a

– If ¬P̂ (σ; a) thenω(a, σ) = 0 andδ(a, σ) = σ

Note that it always holds that if the state of the automaton isσ thenσ is the output sequence

seen so far and̂P (σ). This can be shown by an induction on the steps of the automaton.

We need to consider two cases to show that the automaton≺l-gracefully enforces the

propertyP̂ for any sequenceσ ∈ T ∗.

• Case P̂ (σ): When P̂ (σ) the automaton behaves exactly as the automaton con-

structed in the proof of Theorem 1 in [41]. So we know that the automaton pre-

cisely enforceŝP on σ. Let β = 1|σ|, the minimal approval sequence of length|σ|.

The automaton emitsσ ⊗ β = σ and, sinceβ is the minimal sequence possible,

P̂ (σ ⊗ β ′) ⇒ β ′ 6≺l β for any other approval sequenceβ ′ of lentgth |σ|. So the

automaton≺l-gracefully enforceŝP .

38

• Case¬P̂ (σ): Let σ′ be the event sequence emitted by the automaton. It’s clear

that P̂ (σ′) since the automaton can only emit valid event sequences. Letβ be the

approval sequence induced by the suppression automaton. Wehaveσ ⊗ β = σ′ and

P̂ (σ′). Let β ′ be an approval sequence such thatP̂ (σ ⊗ β ′) andβ ′ ≺l β. Using the

definition of the≺l ordering, we can findx, y, y′ ∈ {0, 1}∗ such thatβ = x; 0; y

andβ ′ = x; 1; y′ (x may be an empty sequence). Recall that we writeσ[..i] for the

i-length prefix ofσ. In this case, leti = |x|, the length ofx. The automaton will

have emittedσ[..i] ⊗ x afteri steps of the automaton running on inputσ. Therefore

the automaton will be in state(σ[..i] ⊗ x). Sinceβ = x; 0; y it follows thatω(σ[i +

1], (σ[..i] ⊗ x)) = 0 so it must have been the case that¬P̂ (σ[..i + 1] ⊗ (x; 1)).

However,P̂ is a safety property, so by (3.2),∀τ ∈ T ∗.¬P̂ ((σ[..i + 1] ⊗ (x; 1)); τ).

Note thatσ[..i+1]⊗ (x; 1) is a prefix ofσ⊗ (x; 1; y′) andβ ′ = (x; 1; y′) so¬P̂ (σ⊗

β ′), which contradicts our assumption aboutβ ′. So no suchβ ′ can exist and theβ

induced by the suppression automaton is minimal.

The ≺l partial order therefore gives us a practical notion of graceful enforcement;

any property that can be precisely enforced by a suppressionautomaton can also be≺l-

gracefully enforced. Using this notion of enforcement we see that suppression automata

are more powerful than truncation automata since, as discussed in Section 3.1.4, a trun-

cation automaton cannot≺l-gracefully enforce any policy where dropping mid-sequence

events yields a valid event sequence.

3.1.5 Reject-Blind Automata

A suppression automaton(Q, q0, δ, ω) is reject-blindif wheneverω(a, q) = 0 thenδ(a, q) =

q. Informally, areject-blindautomaton does not record rejections. A suppression automa-

ton which is not reject-blind is areject-observingautomaton.

The suppression automaton constructed in the proof of Theorem 2 is reject-blind. This

means that we do not need the full class of suppression automata to≺l-gracefully enforce

all safety properties—the class of reject-blind suppression automata is sufficient.

39

However, any automaton that≺l-gracefully enforces a property must by definition pre-

cisely enforce that property. Ligatti et al. showed that suppression automaton can only pre-

cisely enforce safety properties. Therefore, the class of reject-observing automata cannot

≺l-gracefully enforce any property that cannot be≺l-gracefully enforced by a reject-blind

automaton. In some sense, the smaller class of reject-blindautomata is as powerful as the

full class of all suppression automata.

Reject-observable automataarecapable of behaviors that cannot reproduced by reject-

blind automata. However, this behavior cannot be observed in the output trace of the

automaton, and therefore it cannot be distinguished by the security automata framework,

which classifies policies by their sets of acceptable outputtraces.

For example, many automated teller machines will disable a bank card (by taking away

the card) if the cardholder cannot type the correct PIN within three attempts. Consider a

suppression automatonAatm with a similar policy: block all bad eventsb and if there are

threeb’s in a succession then block all further events. This automaton is easy to encode;

we just increment a counter every time we reject ab, reset the counter when we see a non-b

event, and if we see ab with the counter showing two previousb’s we enter a state where

all further events are rejected. This automaton is necessarily reject-observing, as we need

to update our state when we reject ab. However, the set of output traces generated by

this automaton is exactly the set of traces allowed by an automaton which simply dropsb

events without ever disabling the card. For example, on input a; a; b; b; b; a the automaton

Aatm will output a; a, which is also the result of simply dropping theb events from the

tracea; b; a; b; b (among other traces). Any sequenceσ of non-b events is a possible output

of Aatm since we getσ as output if we feedσ; b; b; b to Aatm . Therefore the ATM policy

cannot be expressed using the formal definition of security policy from Section 3.1.1.

40

3.2 Composition

The security automata framework of [41] examines the capabilities of a complete mon-

itor automaton which enforces one property. This work does not address how multiple

properties or automata should be composed. Schneider [60] proposed composing multiple

truncation automata2 by taking a simple conjunction of the automata; when one of the

automata wants to truncate the target the combined automatatruncate the target. The re-

sulting property is the conjunction of all the constituent properties; the combined automata

accept the intersection of all the traces accepted by the constituent automata.

This ability to enforce a policy as a composition is desirable for several reasons,

as discussed in Section 1.1. It allows distinct policies to be described in isolation for

simplicity and clarity. However, conjunction seems to be less appropriate for suppres-

sion automata than truncation automata, as it is not clear iftaking a conjunction of the

constituentω functions yields the desired result. Consider a propertyP̂ab of traces of

T = {a, b, c} which insists that eventb can only occur immediately after ana. An au-

tomatonAab = (Qab, q0, δab, ωab) could enforce such a property by settingωab to reject

any b unless it was preceded by ana. Given the invalid sequencea; b; b; c as input, the

automaton would emit the valid sequencea; b; c. Consider another property,̂P¬a which

disallows traces which begin witha. An automatonA¬a = (Q¬a, q
′
0, δ¬a, ω¬a) could en-

force this property by settingω¬a to reject eventa if it is seen in the initial state. After

the first non-a event the automaton moves to a state where all events are accepted. Given

inputa; b; c the automaton will output the sequenceb; c.

What happens when we take the conjunction of these automata and feed it the event

sequencea; b; c? The automatonAab will accept the first event since itsωab function yields

1, but the automatonA¬a will reject the first event. Taking the conjunction of theω func-

tions we reject the first event. AutomatonAab will then accept theb event because, from

its viewpoint, theb occurs after ana—the automaton has no mechanism to record the fact

that another automaton has rejected an event. Our composed automaton will eventually

2In [60] the termsecurity automatais used solely for what Ligatti et al. call truncation automata.

41

emit b; c given inputa; b; c even though such an output trace violates propertyP̂ab. Un-

like for truncation automata, a conjunction of suppressionautomata does not enforce the

conjunction of the individual properties.

We could construct a suppression automaton covering a number of propertiesP̂1, .., P̂n

by taking the conjunction of all the properties. In other words, setP̂ (σ) ⇔
∧n

i=1 P̂n(σ)

and construct an automaton manually or using the construction described in the proof of

Theorem 2. However, this is unsatisfactory from an engineering point of view; the result-

ing property may be very complex and difficult to encode, and the suppression automaton

construction algorithm in the proof of Theorem 2 may not yield a concise automaton. A

preferable solution would allow us to run a set of automata inparallel, as we can with

truncation automata.

As discussed in Section 1.1, there are situations where, even if we had some system

to combine suppression automata in a well-behaved conjunction, we would want a more

subtle method to combine policies. We may want a policy that can override other policies;

for example, a policy allowing lifeguards to enter a pool should override a policy barring

swimmers from a pool after business hours. A conjunction of these two policies will deny

the lifeguard access to the pool.

From this discussion we derive two requirements for a mechanism for composing sup-

pression automata: first, automata need to be able to react tothe approval/disapproval

decision to properly update their state, and second, automata should be able to submit a

variety of possible opinions on whether to accept or reject,including the option of defer-

ring to or overriding other automata.

Our solution is to extend the definition of a suppression automaton to allow it to record

rejections of events by other automata with which it has beencomposed. We extend the

range of theω function so that instead of yielding 1 or 0, it yields an element in a setD

of votes. To avoid confusion, we useγ : Q × T → D to refer to this extended version

of ω. We add aresolution functionf : 2D → {yes, no,⊤} which combines the votes

from individual automata into a yes orno or ⊤, indicating approval, rejection or conflict.

42

Finally, we extend the domain of the transition functionδ so that it includes the approval

or disapproval as a parameter. This model of composable policy enforcement is described

in the next section.

3.3 Encoding Policies

A policy modelapproves or rejects a transaction request based on the characteristics of the

transaction request and the history of previous transactions. The model is composed of

separatepolicy automatathat vote individually as to whether a transaction request should

be approved. The votes are coalesced into an approval or disapproval using aresolution

function.

3.3.1 Votes and Conflicts

We useD to denote the abstract set of possible votes. Associated with D is a function

f , which resolves votes into{yes, no,⊤}, representingaccept, rejectandconflict (or er-

ror) respectively. The meanings of accept and reject are theobvious ones. Aconflict

result signifies that the votes offer conflicting opinions about whether to accept or reject a

transaction request.

As a simple example,D containsyes, no, andmaybe, andf maps a set of votes toyes

if the set containsyes and does not containno; to no if it containsno and does not contain

yes; and to⊤ if it contains both ayes and ano or onlymaybe.

For a more complex example, we can model votes with varying priorities if we setD

to be the set of integers. We interpret integern > 0 as a vote for acceptance while we

interpretn < 0 as a vote to reject. The absolute value of the vote indicates the priority of

the vote, where higher values have higher priority. For example, if the votes were−5 and

3 then they would be resolved asno or reject, since the reject vote has the higher priority.

Any set of votes where the accept and reject votes had the samemaximum absolute value

would yield a conflict. A set with no votes or with only 0 would also yield conflict.

43

Another resolution strategy for the same set of votes would be to take the sum of all votes,

with a positive, negative and zero sum yieldingyes, no and conflict, respectively.

At times we will treatD andf : 2D → {yes, no,⊤} as abstract mathematical entities.

We need an actualD andf , however, for the implementation of our framework and to get

a concrete sense of how policy models capture real world policies.

We have the following requirements forD andf :

Expressive: The votes should be rich enough to allow various ways of combining and

prioritizing different policies.

Succinct: The votes should succinctly express the policy. They shouldbe easy to write

and maintain. The votes of a single policy should not have to be re-written when

that policy is composed with a new policy.

Efficient: There should be an efficient algorithm for evaluatingf on a set of votes. This is

especially important in applications for devices with limited computational power.

An efficient algorithm forf will also make analyzing the policy model more feasi-

ble.

Well understood: An ideal system of votes would be based an a system that has been

studied in the literature previously instead of something that we invent.

For our payment card application we usedefeasible logicto describe and resolve votes.

As we show in the next section, defeasible logic is rich enough to express various ways of

combining votes. It is succinct enough to express tentativepreferences without explicitly

ranking votes. At the same time, there is an efficient algorithm to computef . Finally,

defeasible logic comes off-the-shelf—it was invented in the 1980s and has been studied as

a purely logical system and as a way to model real-world regulations [55, 56, 48, 47, 8].

44

3.3.2 Defeasible Logic

In this section we introduce defeasible logic, following the presentation of [47]. Readers

who want a more detailed explanation and discussion of the logic are referred to [56, 47].

Atomic formulas and their negations make up theliterals of defeasible logic. For

example, from atomic formulasp, q we get four literals:p, q,¬p,¬q. Thecomplementof

a literall is written∼ l; the complement of an atomic formulap is¬p and the complement

of a negated atomic formula¬p is p. In other words, ifp is an atomic formula then

∼ p = ¬p and∼ (¬p) = p.

Defeasible logic has three kinds ofrules:

Strict rules Strict rules are like normal implication:

penguin → ¬fly

The meaning of this rule is “ifpenguin is true thenfly is not true”.

Defeasible rulesDefeasible rules are like strict rules except that they can be preempted

by other information. For example, the rule

bird ⇒ fly

says that “ifbird is true then we conclude thatfly is true unless we have some reason

to think otherwise”.

Defeater rules Defeater rules are used to block the tentative conclusions of defeasible

rules. For example, the rule

injured ; ¬fly

will block a rule likebird ⇒ fly since the knowledge that a bird is injured counters

our intuition that birds tend to fly. However, the defeater rule (unlike a similar

defeasible rule) does not lead to the conclusion¬fly ; since we have no intuition

about whether injured birds fly or not we do not want to make a tentative conclusion

either way.

45

Each of the rules can have a set of literals on the left hand side instead of just a single

literal. In such a rule all literals in the set must be true forthe rule to apply. For example,

in the rule

fly ,mammal, scary ⇒ bat

we tentatively concludebat only if fly ,mammal andscary are all true. If a rule has an

empty set of literals on the left hand side then we write the left hand side as “{}”, as in

“{} ⇒ q”.

The literals on the left hand side of a rule are theantecedentsof the rule. We denote the

antecedents of a ruler asA(r). The literal on right hand side of the rule is theconsequent

of the rule, and we useC(r) to refer to the consequent of a ruler.

We can assign priorities to rules by giving a partial ordering of rules. This ordering

determines which rule to apply when two rules conflict. For example, if we have two rules

r1 : injured ⇒ ¬strong

r2 : big ⇒ strong

then if r1 < r2 we will conclude that an elephant that is big and injured is strong; ruler1,

which suggests that such an elephant is not strong, is overridden byr2 sincer2 is superior

to r1 in the ordering.

Inference in Defeasible Logic

A defeasible logictheoryconsists of a setF of facts(literals known to be true), rulesR,

and a partial order relation> on R. Given a theory we can construct aderivationusing

the inference rules for defeasible logic. A derivation is a sequenceP = P (1), . . . , P (n)

of tagged literals, literals annotated with a tag indicating what we have proved about the

literal. In defeasible logic there are two notions of provability and each form of provability

has a positive and negative tag. The four possible tagged literals corresponding to a literal

l are:

46

• +∆l: l has been definitely proved. Informally,l has been proved using strict rules

and facts.

• −∆l: l cannot be definitely proved. Informally, we have shown that+∆l will never

be derived.

• +∂l: l is defeasibly provable. Informally,l has been proved using both defeasible

and strict rules, in addition to facts.

• −∂l: l cannot be defeasible proved. We have shown that+∂l will never be derived.

We use the following notation for various subsets ofR, a set of rules. The set of strict

rules is denoted byRs. We useRsd for the set of strict and defeasible rules,Rd for the set

of defeasible rules,Rdd for the set of defeasible and defeater rules, andRdft for the set of

defeater rules. We writeR[q] for the set of rules with consequentq. This notation extends

to subsets ofR so that, for example,Rd[q] is the set of defeasible rules with consequentq.

The derivation sequenceP = P (1), . . . , P (n) is constructed incrementally. Each step

in the construction adds one elementP (i + 1) to P based on the elementsP (1), . . . , P (i)

and one of four inference rules which are described below. Each rule corresponds to one of

the four types of tagged literals described above. We writeP (1..i) to refer to the sequence

P (1), . . . , P (i).

The first two inference rules deal with definite provability.This is provability in the

classical monotonic sense. We make conclusions based on chains of implication without

worrying if some other chain of implication contradicts ourconclusion.

Rule +∆: We can appendP (i + 1) = +∆q if either

q ∈ F or

∃r ∈ Rs[q]. ∀a ∈ A(r). + ∆a ∈ P (1..i)

We can mark a literalq as definitely provable if it is a fact or it can be proved using astrict

rule where the antecedents of the rule are all definitely provable.

47

For example, if our theory has one facta and one rulea → b (where botha andb are

atomic formulas) then we can apply rule Rule+∆ once for the first step of the derivation

P (1) = +∆a (sincea is in F) and once again for the second stepP (2) = +∆b since there

exists a strict rule implyingb with all antecedents (that is,a) tagged as definitely provable.

The rule for marking a literal as impossible to prove definitely has a similar structure

to the previous inference rule:

Rule−∆: We can appendP (i + 1) = −∆q if

q 6∈ F and

∀r ∈ Rs[q]. ∃a ∈ A(r). − ∆a ∈ P (1..i)

We can mark a literalq as definitely unprovable if it is not a fact and all the rules that can

strictly concludeq are disabled because they depend on literals which cannot bedefinitely

proved.

For example, if our theory has no facts and one rulea → b then we can apply Rule−∆

to get derivation stepP (1) = −∆a becauseRs[a] is empty (no rules implya), and then

we can apply the rule again to get stepP (2) = −∆b since the only rule inRs[b] is a → b

which has an antecedenta which has been shown to be impossible to definitely prove.

The next two inference rules deal with defeasible provability, for which we must con-

sider competing chains of implication.

Rule +∂: We can appendP (i + 1) = +∂q if either

(1) +∆q ∈ P (1..i) or

(2) (2.1)∃r ∈ Rsd[q].∀a ∈ A(r). + ∂a ∈ P (1..i) and

(2.2)−∆ ∼ q ∈ P (1..i) and

(2.3)∀s ∈ R[∼ q] either

(2.3.1)∃a ∈ A(s). − ∂a ∈ P (1..i) or

(2.3.2)∃t ∈ Rsd[q] such that

∀a ∈ A(t). + ∂a ∈ P (1..i) andt > s

48

If a literal q is definitely provable then it is defeasibly provable; if clause (1) is true then

we can apply Rule+∂. Otherwise, we need to show (2) that there is rule which implies

q which is not overruled by a competing rule. Clause (2.1) ensures that the rule implies

q and its antecedents are defeasibly provable. (2.2) checks that∼ q, the complement of

q, has been shown to be unprovable. (2.3) checks that any rule implying ∼ q is either

inapplicable because they depend on antecedents that are not provable (2.3.1) or they are

overridden by a rule implyingq that has a higher priority in the ordering of rules (2.3.2).

Consider a theory with one fact,bird , and one ruler1 : bird ⇒ flies. We can apply

inference rule+∆ to get P (1) = +∆bird (sincebird is a fact). We can then apply

inference rule+∂ for bird since clause (1) above applies, yieldingP (2) = +∂bird . We

can apply inference rule−∆ to getP (3) = −∆¬flies since there are no rules implying

¬flies . Finally, we can apply inference rule+∂ again forflies to getP (4) = +∂flies since

clause (2) applies: there is a defeasible rule implyingflies with all antecedents marked as

defeasibly provable (2.1), and we have shown that¬flies cannot be definitely proved, and

there are no rules implying¬flies (2.3). Note that we have shown thatflies is defeasibly

provable without showing it to be definitely provable. In fact, it is impossible to generate

a derivation for+∆flies in this theory.

Consider the same theory above with an additional factinjured and an additional rule

r2 : injured ; ¬flies with no ordering onr1, r2. We can take the same inference steps de-

scribed in the preceding paragraph except for the last step.In that step, clause (2.3.1) does

not hold because there is a ruler2 ∈ R[¬flies] whose antecedent is not tagged as impossi-

ble to prove defeasibly. In fact, adding this additional fact and rule makes it impossible to

have a derivation containing+∂flies .

The rule for marking a literalq as impossible to defeasibly prove is similar in structure

to the preceding rule:

Rule−∂: We can appendP (i + 1) = −∂q if

(1)−∆q ∈ P (1..i) and

(2) (2.1)∀r ∈ Rsd[q].∃a ∈ A(r). − ∂a ∈ P (1..i) or

49

(2.2)+∆ ∼ q ∈ P (1..i) or

(2.3)∃s ∈ R[∼ q] such that

(2.3.1)∀a ∈ A(s). + ∂a ∈ P (1..i) and

(2.3.2)∀t ∈ Rsd[q] either

∃a ∈ A(t). − ∂a ∈ P (1..i) or t 6> s

In order to markq as not defeasibly provable we need to check that it is not definitely

provable (1) and that defeasible implications are impossible (2). Showing that defeasible

implications are impossible requires us to show that (2.1) all rules implyingq are blocked

because one of their antecedents is not provable, or (2.2) that the complement ofq has

been shown to be definitely provable, or (2.3) that there is a rule that implies∼ q that is

enabled (2.3.1) and is not overruled by a competing rule witha higher priority (2.3.2).

Consider a theory with no facts and one ruleb ⇒ a. We can apply inference rule−∆

to getP (1) = −∆b since there are no strict rules implyingb andb is not a fact. Similarly,

we can apply the same inference rule to get the derivation step P (2) = −∆a since there

are no strict rules implyinga (the ruleb ⇒ a is defeasible, not strict). We can then apply

the inference rule−∂ for the literalb because clause (1) holds forb and clause (2.1) holds

since the setRsd[b] is empty. This gives usP (3) = −∂b. Once we have shownb to be

impossible to prove defeasibly we can apply the inference rule−∂ again, this time for the

literal a. The derivation stepP (2) gives us clause (1) and whileRsd[a] is not empty since

it contains the ruleb ⇒ a, the antecedentb in the rule has been tagged as impossible to

prove defeasibly, so (2.1) holds.

We say that a tagged literaltl is a conclusionof a theory(F, R, >) if we can apply

the inference rules described above to yield a derivation whereP (i) = tl for somei. We

denote this as(F, R, >) ⊢ tl.

50

3.3.3 Defeasible Logic as a Voting Mechanism

In our framework, policies vote by giving rules that reason about a special literalyes

which stands for “approve the transaction request”. More precisely, there is a set of atomic

formulasAF which is fixed for an application. The atomic formulayes is one element of

AF . Let R be the set all rules (strict, defeasible and defeater) made of elements ofAF .

The setD of votes is the set of finite subsets ofR. In other words, every voted ∈ D is a

list of zero or more rules. All the votes are combined by taking the union of all the sets of

rules.

For our voting mechanism we setF , the set of facts, to be empty. To state that a literal

is true we can include a rule with an empty set of antecedents.For example,{} → a

will imply that a is provable, essentially makinga a fact. We also assume that the>

order on rules is trivial, in the sense that no rule is greaterthan any other rule. These

restrictions simplify the voting mechanism and they also let us optimize the inference

algorithm—for example, clause (2.3.2) in inference rules+∂ and−∂ becomes trivial.

We have found that even with the restrictions mentioned above the voting mechanism is

expressive enough to encode the policies we want to encode. (If extra flexibility is needed

it would be fairly simple to extend the formal framework and implementation to handle

facts and rule orderings.) With these restrictions the defeasible logic theory is entirely

determined by the setV of votes (which gives a set of rules), so we writeV ⊢ tl to state

that a theory made from votesV yields conclusiontl.

The resolution functionf on argumentV ⊂ D is defined as follows:

• f(V) = yes if V ⊢ +∂yes andV 6⊢ +∂¬yes.

• f(V) = no if V 6⊢ +∂yes.

• f(V) = ⊤ if V ⊢ +∂yes andV ⊢ +∂¬yes.

Note that it is possible for bothyes and¬yes to be defeasibly provable in defeasible

logic.

51

Consider the following three votes:

v1 : {} ⇒ p; q ⇒ yes

v2 : p → q

v3 : {} → ¬yes

Evaluatingf on these votes gives usf({v1, v2, v3}) = no sincev3 concludes (without

preconditions) thatyes is not defeasibly provable. However, if we only consider thefirst

two votes thenf({v1, v2}) = yes since thev1 allows us to tentatively concludep, v2 allows

us to concludeq (givenp), and the second rule ofv1 allows us to concludeyes givenq.

3.3.4 Other Voting Mechanisms

The primary voting mechanism we investigate in this work is the defeasible logic voting

mechanism described in the previous section. However, for illustration and comparison

we will occasionally employ other voting mechanisms. We describe four different mech-

anisms in this section.

Definition: In thebinary voting mechanismthe set of votesD2 is just{true, false}, indi-

cating approval and disapproval respectively. The voting function simple takes the con-

junction of all the votes:f2(V) = yes if
∧

v∈V v, otherwisef2(V) = no.

Note that conflicts are impossible in this voting mechanism.The binary voting mechanism

is very simple, and is essentially the same as using conjunction to compose suppression

automata as discussed in Section 3.2.

Definition: The3-valued logic voting mechanismhas a set of votesD3 = {true, false,⊥},

wheretrue indicates approval,false indicates rejection, and⊥ indicates that we have no

preference. The resolution functionf3 is evaluated on votesV ⊂ D3 as follows

• f3(V) = yes if true ∈ V andfalse /∈ V .

52

• f3(V) = no if false ∈ V andtrue /∈ V .

• f3(V) = ⊤ if true, false ∈ V or true, false /∈ V .

The next voting mechanism resembles the majority voting of political elections.

Definition: In theelection voting mechanismthe set of votesDe is {truei, falsei,⊥i}, the

values of three valued logic tagged with unique identifier3, and the resolution function

fe(V) returnsyes if the true votes outnumber thefalse votes,no if the false votes outnum-

ber thetrue votes, and⊤ if the thetrue andfalse votes are equally numerous.

Our next voting mechanism is a generalization of the 3-valued logic mechanism where

we can annotatetrue andfalse with priority levels.

Definition: Theprioritized logic voting mechanismhas a set of votes

Dp = {⊥} ∪ {true, false} × {1, 2, . . .}

A vote of⊥ indicates no preference, a vote of(true, n) is a vote to approve with priorityn,

and a vote of(false, n) is a vote to reject with priorityn. If a vote(true, n) conflicts with

a vote(false, n′) then the vote with the higher priority takes precedence. More formally,

we define a functionpri wherepri(⊥) = 0 andpri(b, n) = n. Let max(V) ⊂ V ⊂ Dp be

the set of votes with the maximal priority. In other words,max(V) = {v ∈ V. u ∈ V ⇒

pri(v) ≥ pri(u)}.

• fp(V) = yes if max(V) = {(true, n)} for somen.

• fp(V) = no if max(V) = {(false, n)} for somen.

• fp(V) = ⊤ if V = ∅ or max(V) = {⊥} or max(V) = {(false, n), (true, n)}.

3We tag the votes so that when we take the union of all votes we retain information about the number of
votes fortrue, false and⊥.

53

We will refer to the components of the defeasible logic voting mechanism as simply

D andf . Other voting mechanisms will be identified with a subscript: D3 andf3, andDp

andfp, etc.

3.3.5 Policy Models

Let T be the set of all transaction requests for a particular application domain. For ex-

ample, in an e-commerce application we might haveT be a set of integer-string pairs that

represent the price and the seller of the transaction request. Let D be a set of votes.

Definition: A policy automatonP is a tuple(Q, q0, γ, δ). The components ofP are

Q A set ofstates

q0 An initial state

γ Thevoting functionof P . γ is a function

γ : Q × T → D

which determines how the policy automaton votes in a given state to process a given

transaction.

δ Thetransition function,

δ : Q × T × {yes, no} → Q

which governs how the policy automaton updates its state when a transaction request

has been approved or disapproved.

Note that the transition functionδ is not defined for votes in which the resolution

function returns⊤; as we see below, if the resolution function yields⊤ the set of automata

enters a special error state.

As we discuss in the Chapter 4, in practice the policy automaton is specified using a

graphical language. We split the automaton state intomodes(similar to control points in

54

a program) andvariables. The modes are expressed as vertices in our graphical language.

The edges are annotated by guards and assignments that referto the variables and transac-

tion parameters, and specify the transition functionδ. The modes are annotated with vote

statements that refer to the current state and the transaction parameters, and specify the

functionγ.

Definition: A policy modelis a triple (Π, D, f) whereΠ is a finite set of policy automata,

D is the set of votes, andf is a resolution functionthat maps a set of elements ofD to

{yes, no,⊤}.

SinceD andf are usually, respectively, the subsets of the set of defeasible logic rules

and the function defined in Section 3.3.3, we will sometimes conflate a policy model

(Π, D, f) and the underlying setΠ of policy automata. For example, when we write a

modelM = M ′ ∪ {P} we meanM = (Π ∪ {P}, D, f) whereM ′ = (Π, D, f).

Consider the following payment card policy: “Allow at most one purchase over $100.

All purchases≤ $100 are allowed unless a purchase is made for≥ $200, after which no

purchases will be allowed at any price.” Assume transactions t consist of a single value

representing the price (for example,t = 25). A policy automaton that implements this

policy could be described as follows. We letQ = {q0, q1, q2}, where stateq0 is the initial

state where we have seen no purchases over $100,q1 is the state after one purchase of over

$100, andq2 is the state after one purchase of over $200. The functionγ maps states to

votes as follows:

(q0, t) 7→ dyes, ∀t

(q1, t) 7→ dyes, ∀t ≤ 100

(q1, t) 7→ dno, ∀t > 100

(q2, t) 7→ dno, ∀t

wheredyes is a single defeasible logic rule({} → yes) which forces the literalyes to be

provable (that is, forces the request to be accepted) anddno is the opposite rule({} →

55

¬yes) that forces a rejection. The functionδ updates state as follows:

(q0, t, yes) 7→ q1 for 200 ≥ t > 100

(q, t, yes) 7→ q2 for t ≥ 200, ∀q ∈ Q

(q, t,−) 7→ q otherwise

where the ‘−’ in the last line indicates that the mapping applies whethertransaction re-

quest was approved or not. In the initial stateq0 all purchases are approved. The transition

function switches states fromq0 to q1 when a purchase of> 100 is made, thereby disal-

lowing further purchases> 100. If the purchase is≥ 200 then the transition switches to

stateq2, thereby preventing any future purchases.

3.3.6 Semantics

Consider a policy model(Π, D, f), whereΠ = {P1, . . . , Pk}. Let Qi be the set of states

of each policy automatonPi. The state of the policy model at any point in time can be

described by a vector(q1, . . . , qk), where eachqi ∈ Qi. Initially, each policy automaton

starts in its initial state. We proceed to describe how transactions are processed and states

are updated.

Suppose the current state of the policy model is(q1, . . . qk) and the current transaction

request ist. For each policy automatonPi, its vote isdi = R(qi, t). We then evaluatef(~d),

where~d = {d1, . . . dk}, and interpret the outcome as follows:

yes the transaction request is approved.

no the transaction request is rejected.

⊤ there is a conflict between two or more policies.

One desirable property for a policy model is that if votes~d are produced by the individual

policies thenf(~d) = yes or no—in other words, policies do not conflict with each other

when composed.

56

Once a transaction request is approved or rejected each policy automaton updates

its state. Intuitively, a policy automaton always has two possible transitions that it can

follow—one to record approvals and another to record rejections. If a policy automaton

is in stateq and a transaction requestt is approved then the state is updated toδ(q, t, yes).

Similarly, if the transaction requestt is rejected, the state will be updated to beδ(q, t, no).

This update extends in the natural way to states of a policy model. For a state(q1, . . . qk)

of the policy model and a transactiont, let di = R(qi, t) be the vote the policy automaton

Pi supplies, and leta = f({d1, . . . dk}). If a = yes or a = no, then we write

(q1, . . . qk)
t↑a
=⇒ (q′1, . . . q

′
k)

whereq′i = δ(qi, t, a) gives the updated state of the automatonPi. If a = ⊤ then there

is a conflict between policies and the policy model moves intoa special error stateq⊤,

essentially terminating the operation of all the automata.We denote this case by

(q1, . . . , qk)
t↑⊤
=⇒ q⊤

Once the policy model enters the error state it responds to all transaction requests with⊤,

indicating an error:

∀t ∈ T, q⊤
t↑⊤
=⇒ q⊤.

The update relation is now generalized to a sequence of transaction requests. Given a

sequence of transaction requestsτ = t1, . . . , tn, we write

~q
τ↑α
=⇒ ~q′.

if there exist model states~q1, . . . , ~qn−1, andα = a1 . . . an such that

~q
t1↑a1

=⇒ ~q1
t2↑a2

=⇒ · · ·
tn−1↑an−1

=⇒ ~qn−1
tn↑an

=⇒ ~q′.

Given a policy modelA and a sequenceτ of transaction requests we sayA emitsα on

τ if for the initial state~q0 of the model, there exists some~q′ such that

~q0
τ↑α
=⇒ ~q′.

57

When it is not clear which policy model we are referring to we will subscript the update

notation with the model. For example, for policy modelM we will write q
t↑a
=⇒M q′ and

q
τ↑α
=⇒M q′.

3.4 Properties of Policy Automata

In this section we define and investigate some interesting properties of policy automata.

3.4.1 Conflicts

A policy model with initial state~q0 is conflict-freeif for all sequencesτ of transaction

requests,~q0
τ↑α
=⇒ ~q′ implies~q′ 6= q⊤. It is easy to see that a conflict-free model will never

emit⊤ in response to a transaction request. Typically a developerwill want to ensure that

her policy model is conflict-free before deploying it.

A simple example of a conflict with the defeasible logic voting mechanism is a com-

bination of two votes

• v1 : {} → ¬yes

• v2 : {} → yes

Both yes and¬yes are asserted to be true, which makes both literals provable,forcing

a conflict. This conflict can be avoided if one of the automata defers to the other; for

example, votev1 could be changed to “{} ⇒ ¬yes”, which only assertsyes if other votes

do not contradict the vote.

3.4.2 Redundancy

Intuitively, a redundant policy automaton is one which has no effect on the responses to

transaction requests.

58

Definition: Given a policy modelM = (Π, D, f) whereΠ = {P1, . . . , Pk}, policy au-

tomatonP is redundant inM if for all sequencesτ of transaction requests,M emitsα on

τ if and only if the policy model(Π ∪ {P}, D, f) emitsα on τ .

In some circumstances having a redundant policy automaton may be undesirable—it

may be an indication that a policy is being overridden by other policies. At the very least,

it indicates that a simpler, smaller model could be used to dothe same job. If a device has

a limited amount of memory in which to store programs then a developer would want to

avoid installing redundant policy automata.

The definition of redundancy above only applies to a policy automaton’s behavior

when combined with a given set of automata. However, in a situation where a policy

developer expects additional policies to be installed on the card this redundancy may not

be appropriate. Consider a policy automatonP which has a single vote, which is always

enabled for all transaction requests, of the forma → yes. This vote forces an accept when

the literala is true. If this policy is combined with a policy modelM with no automata

with votes concludinga (that is, no votes with implication rules witha on the right hand

side of the rule) then the implicationa → yes will never be triggered, so this vote will

never affect the approval of a transaction request. Obviously, P is redundant inM . We

then add a policyPa which has a vote of the form{} → a, which asserts thata is true,

to M to makeM ′. The vote ofP will be activated sincea is now true, soP will now

affect what gets emitted by the automaton. In other words,P is redundant inM but not

M ′ = M∪{Pa}. We can strengthen the notion of redundancy so that a policy is redundant

no matter what policies are installed in the future.

Definition: Given a policy modelM = (Π, D, f) whereΠ = {P1, . . . , Pk}, policy au-

tomatonP is strongly redundant inM if for all finite setsΨ of policy automata, and for

all sequencesτ of transaction requests,M ′ = (Π ∪ Ψ, D, f) emitsα on τ if and only if

M ′ = (Π ∪ {P} ∪ Ψ, D, f) emitsα on τ .

It is easy to see that strong redundancy implies redundancy;if P is strongly redundant

in A then it is redundant forA ∪ Ψ whereΨ is the empty set. The converse is not true, as

59

we showed in the example above whereP was inactive untilPa was added to the model.

What kind of policies are strongly redundant? If a policy automaton has only empty

votes—votes which consist of zero defeasible logic rules—then it will not ever affect the

inference algorithm, so it will be redundant in all models, and therefore strongly redundant

in all models. If a policy automatonP only contributes redundant votes to a model—in

other words, wheneverP gives votev there is an automaton in the model giving the same

votev—thenP will never affect the outcome of the inference algorithm; such aP will be

strongly redundant in that model.

More generally, we define aredundancy orderingto be a partial order� of D such

that

d � d′ ⇒ ∀V ⊂ D.f(V ∪ {d, d′}) = f(V ∪ {d}) (3.3)

If an automatonP ’s voted is always dominated in the� ordering by one of the votes in

an automaton in a policy modelM , thenP is strongly redundant inM .

Example 3 If we choose the set of prioritized logic votes(Dp, fp) for our voting mecha-

nism, we can order votes according to their priorities:v �p u ⇔ pri(v) ≤ pri(u). Since

fp ignores any votes that have less than maximal priority, our�p ordering satisfies 3.3. So

if an automatonP always supplies a votev that is of lower priority than a vote contributed

by an automaton in a modelM , thenP is strongly redundant inM .

A similar ordering exists for our defeasible logic voting mechanism. Intuitively, an

implication rulea1, a2, a3 → c is redundant if there is already a rulea1, a2 → c present;

whenever the first rule is triggered the second rule will alsobe triggered, so if the first rule

is dropped the conclusions that can be inferred from the rules will not change. A careful

case by case analysis of the defeasible logic inference algorithm confirms this intuition:

if a defeasible logic theory contains rulesr1 : a1, .., an � c andr2 : a1, .., ai � c where

i < n and� is one of→,⇒, ;, then we can dropr1 without changing the tagged literals

that can be derived from the rules. This gives us a partial order on votes satisfying (3.3).

Recall that we useA(r) to denote the antecedents of the ruler andC(r) to denote the

60

consequent of the ruler. We get the following order:

v �r u ⇔ ∀r ∈ v. ∃s ∈ u. C(s) = C(r) ∧ A(s) ⊆ A(r)

A policy automatonP that always submits votes that are smaller, using the�r ordering,

than one or more votes from the automata in a modelM is therefore strongly redundant

in M .

3.4.3 Refinement

Refinement is a concept that has been studied in the context offormal models of compu-

tation. Informally, a program (or an agent, or a module, etc.) p refinesp′ if it is safe to

replacep′ with p. It is often the case that a refinement relation can make program analysis

easier; we can check a simple program and infer that a more complex refinement of the

simple program behaves similarly.

One natural definition of refinement in the context of event sequences is to use a subset

relation as the refinement relation; if a suppression automaton A emits a set of event

sequencesΣ then a suppression automatonA′ which enforcesΣ′ ⊆ Σ can safely replace

A since anything thatA disallows will be disallowed byA′. For truncation automata

there is a natural correspondence between refinement and composition. If a truncation

automatonA1 precisely enforces a policy which admits a setΣ1 of traces, and another

truncation automatonA2 precisely enforces a policy that allows the setΣ2 of traces, then

composing the two automata yields an automaton which allowsΣ1 ∩ Σ2. A composition

of automata is therefore a refinement of each of the constituent automata. This suggests

the following refinement relation:

Definition: A policy model (or suppression automaton)M with output tracesΣM is a

sequence refinementof a policy modelN with output tracesΣN if and only if ΣM ⊆ ΣN .

We write this asM ≤s N .

As noted above, if we compose two truncation automataA1 andA2 to make a trunca-

tion automatonA3, thenA3 ≤s A1 andA3 ≤s A2.

61

This correspondence between composition and intersectiondoes not hold for policy

automata in general; a counter-example is described below.However, if we use the binary

voting mechanism(D2, f2), where votes are eithertrue or false and votes are resolved by

taking the conjunction of all votes, then composition does correspond to intersection if the

policy automata are reject-blind.

We defined reject-blindness for suppression automata in Section 3.1.5. We extend the

definition for policy automata and policy models in the natural manner: a reject-blind

policy automaton is a policy automaton(Q, q0, γ, δ) whereδ(q, t, no) = q for all q ∈

Q, t ∈ T . Informally, a reject-blind automaton does not record transaction requests which

are rejected. It is simple to see that a policy model that is constructed from reject-blind

policy automata will be a reject-blind suppression automaton.

If a policy modelM1 allows output sequencesΣ1 ⊆ T and policy modelM2 allows

output sequencesΣ2 ⊆ T then, assuming both models use the(D2, f2) voting mechanism,

if we compose the models by taking the union of their policy automata then the composed

policy modelM3 will only allow output sequences inΣ1 ∩ Σ2, soM3 ≤s M1 andM3 ≤s

M2.

However, if we allow automata which can update state after rejecting a transaction

request then the composition of two policy models may allow output events which are not

allowed by one of the models in isolation. The following example illustrates such a case.

Example 4 Let T = {a, b, c}. A policy automatonP1 = (Q1, qinit1, γ1, δ1) that only

accepts sequences of the forma; b; c; a; b; c; a; . . . could be encoded with three states,qa(=

qinit1), qb andqc, with qi indicating that only transaction requesti will be accepted. When

reading inputa; b; c; a; b; c; a; . . . the automaton will move from fromqa → qb → qc → qa

and so on. We can set the transition functionδ1 so that this state update happens even

if the transaction request is rejected by another automaton. Note thatP1 is not reject-

blind since it switches states even when a transaction request is rejected. In isolation, the

automatonP1 will only accept traces of the forma; b; c; a; b; c; a; . . .

Consider another automatonP2 which accepts all transaction until onec transaction

62

request has been approved. After this point,P2 acceptsa’s and b’s but not c’s. If we

composeP1 andP2 by combining them in a policy model the resulting model will behave

as follows on the input sequencea; b; c; a; b; c; a. The automatonP2 will vote to reject the

secondc transaction request, whileP1 will vote to accept all the events (sinceP1 updates

its state whether or not the event was rejected byP2). The resulting output sequence will

bea; b; c; a; b; a, which is not an output sequence admitted byP1 in isolation.

This example shows how even a simple voting mechanism coupled with automata that

record rejections can lead to behavior where composing automata does not lead to a se-

quence refinement of the individual policy automata. The following refinement relation,

priority refinement, attempts to capture the sense that a more specific or precise policy

automaton is safe replacement for a less specific policy automaton. Intuitively, a pol-

icy modelN refinesM if N ’s decision differs fromM only whenN ’s decision is more

definite (or has a higher priority) thanM ’s decision.

Definition: Priority refinement:Let C be a partially ordered set. We will call this set the

consolidated vote set. We order sequences inC∗ by individually comparing the elements

of the of the stream; given sequencess = c1, c2, . . . ands′ = c′1, c
′
2, . . ., we says ≤ s′ only

if ci ≤ c′i for all i.

Let g be a function from subsets ofD (the set of votes) toC. Given a transaction

request sequenceσ and a policy modelM , lets(M, σ) be the sequencec1, c2, . . . generated

by taking lettingci = g(~di) where~di are the votes thatM yields on thei-th transaction of

σ. If c < c′ for c, c′ ∈ C then intuitively the decision that yieldedc is more definite than,

or outranks, the decision that yieldedc′.

We say a policy modelN is apriority refinementof M if for all requests sequencesσ,

s(N, σ) ≥ s(M, σ). Note that priority refinement depends onD, C andg. If we assume a

fixedD, C andg we write this asN ≤s M .

Example 5 If we are using the prioritized logic voting mechanism(Dp, fp) then we can

setC to be the set of non-negative integers andg(V) to be the maximal priority of all the

votes inV ⊂ Dp.

63

The definition of stream refinement is partly unsatisfactorybecause it relies on the

internal details of the implementation since it is based on afunction g which gives the

importance of a particular decision. It also seems to be too fine a relation. LetM be a

policy model that only accepts the first three transaction requests. LetN be a policy model

that only accepts the first three transaction requests that are under $50. ThenN ≤s M but

we can designM andN so thatN 6≤p M .

3.5 Analysis

The formal definition of policy automata and their properties gives us the ability to for-

mally check policy automata for those properties.

3.5.1 Detecting Conflicts

If a policy model has a finite number of states we can use a conservative on-the-fly reach-

ability analysis to look for states where conflicts occur. Ifnone of the reachable states will

emit ⊤ on any transaction request then we know that our model is conflict-free. (If our

policy model has an infinite number of states then we can make the number of states finite

by using abstraction.)

Checking a given state for conflicts involves evaluating theresolution functionf on

all possible combinations of votes in that state. Computingf can be done efficiently as

[56] gives an algorithm for finding the consequences of a defeasible theory in time that is

polynomial with respect to the number of literals and defeasible logic rules, and [47] gives

a linear time algorithm.

3.5.2 Redundancy

We may also want to check that a policy automatonP is redundant in a policy model

M = (Π, D, f). Recall that a policy automaton is redundant in a policy model if adding

it to the model does not change which transactions are approved or rejected. LetM ′ =

64

(Π∪{P}, D, f) be the modelM augmented with automatonP . For a given policy model

stateq′ of M ′ let dq′,t be the vote thatP gives when processing transactiont in stateq′,

and letVq′,t be the set of votes supplied by the automata inΠ. The policy automatonP is

redundant atq′ if

∀t ∈ T, f(Vq′,t ∪ {dq′,t}) = f(Vq′,t) (3.4)

Claim 6 P is redundant inM if and only if it is redundant at each reachable model state

in M ′.

Proof: ⇐. We prove the if direction by induction on the length of inputsequences.

Recall that states in a policy model withk policy automata arek-tuples of the states of the

constituent policy automata. We use the notationπP (q′) to denote the projection of the

k + 1-tuple q′ state ofM ′ to ak-tuple q state ofM where we ignore the state of theP

policy automaton.

Assuming (3.4) holds for all reachable states inM ′, our induction hypothesis withn

being the index of induction is

∀τ ∈ T n, q′0
τ↑α
=⇒M ′ q′n implies ∃qn. q0

τ↑α
=⇒M qn ∧ qn = πP (q′n)

whereq0 is the initial state ofM andq′0 is the initial state ofM ′.

• Case: n = 1. The input sequenceτ = t for somet ∈ T . The initial stateq′0 of M ′ is

ak + 1-tuple of thek + 1 initial states of the policy automata inM ′. By definition,

we get the initial state ofM by projecting out the initial state ofP to get ak-tuple.

The votes submitted byM ’s automata depend only on the automata’s states and

the transaction submitted. Since each ofM ’s policy automata’s state is the same in

q0 andq′0, given t as input the automata inM will all submit the same votesV in

M andM ′. Let d be the vote submitted byP in this initial state. From (3.4) we

know thatf(V) = f(V ∪ {d}) so both automata emit the same response. A policy

automaton’s update functionδ depends only on the current state of the automata,

65

the current transaction request, and the response emitted,so the next state afterq0 in

M must be the same as theπP projection of the next state inM ′. So the induction

hypothesis holds forn = 1.

• Case: n > 1. A similar argument applies in this case. Given ann − 1 length

sequenceτ , the induction hypothesis tells us that after readingτ , M will be in a

stateqn−1 that is aπP projection of the stateq′n−1 of M ′, and that both models have

emitted the same sequence of responses. Lett be the next transaction request. The

votes submitted byM ’s automata will be the same in both models, and (3.4) shows

that P ’s vote does not affect the resolution function. Therefore,the update will

proceed identically forM ’s automata in both models, and the next state ofM will

be aπP projection of the next state ofM ′.

By induction, (3.4) therefore implies that for any finite length input sequence both policy

models will emit the same response sequence.

⇒. To show the only if direction we assume thatP is redundant but there is a reachable

state ofq′ of M ′ and a transaction requestt ∈ T such that (3.4) does not hold. Sinceq′

is reachable there must be some input sequenceτ and response sequenceα such that

q′0
τ↑α
=⇒

′

M q′. Assume without loss of generality thatτ is the shortest such input sequence.

Since no shorter input sequence leads to a state which violates (3.4), using the inductive

argument used above for the if direction of this proof we can show that after readingτ

the modelM will be in a stateq that is aπP projection ofq′, and that both models will

have emitted the same sequence of responses as output. Therefore the policy automata

of M will submit the same votesV as they do inM ′. SinceP is redundant inM , both

M andM ′ must emit the same output sequence on inputτ ; t. In particular, they emit the

same response ont in statesq andq′. Thereforef(V) = f(V ∪ {d}) whered is the vote

contributed byP in M ′ in stateq′ with input t. However, this contradicts our choice oft

andq′, showing that no sucht andq′ exist. This proves this direction of the only if, and so

we have proved the claim.

66

We can therefore check for redundancy by finding all reachable model states of the

larger modelM ′ and verifying that each state satisfies equation (3.4). As discussed above,

evaluatingf for all transactions can be done efficiently.

This technique for checking redundancy can be leveraged to validate a policy. Sup-

pose a complex set of policy automataP1, . . . , Pn is supposed to exclude a certain class of

transaction request sequences. For example, we want our policy model to exclude reject

a transactions after three consecutiveb events. We can write a simple policy automaton

P ′ that rejects that class, then check to see if it is redundant in P1, . . . , Pn. If P ′ is redun-

dant then we know thatP1, . . . , Pn will reject that trace. If the class of sequences is large

or infinite, as is the case in our example, then this techniquewill be faster than check-

ing undesired sequences one by one. The automatonP ′ therefore functions as a partial

specification of the desired policy model.

We can check forP being strongly redundant inM by checking a stronger condition

on all reachable states ofM ′ = M ∪ {P}:

∀t ∈ T, ∀ V ′ ⊆ D, f(Vq′,t ∪ {dq′,t} ∪ V ′) = f(Vq′,t ∪ V ′) (3.5)

Verifying (3.5) is not as straightforward as verifying (3.4), which just required two evalu-

ations of the resolution function. However, as discussed inSection 3.4.2, there are special

cases where checking that a vote is redundant is simple. For example, if there is a vote

d ∈ Vq′,t such thatdq′,t �r d (recall that a�r orders votes by comparing the sets of the

antecedents of the defeasible logic rules) then the votedq′,t can be ignored. If such ad can

be found for allt ∈ T and reachableq′ then equation (3.5) will hold.

3.6 Expressiveness

In this section we give some sense of how expressive the policy automata formalism is in

a formal sense. In Chapter 4 we examine expressiveness is a less formal sense.

67

3.6.1 Translating to Classical Automata

In this subsection we discuss the expressiveness of the policy automata framework by

comparing it to a classical automata formalism.

Mealy machines [30] are a form of finite automata which give output instead of merely

accepting or rejecting. A Mealy machine is a six-tupleM = (Q, T, ∆, δ, λ, q0) whereQ is

the finite set of states withq0 ∈ Q the initial state,T is the set of input events,∆ is the set

of possible output events,δ : Q × T → Q describes how the machine updates state, and

λ : Q × T → ∆ is the function which determines what gets written as output. On input

a1; a2; ..; an, if the machine goes through statesq0, q1, .., qn, the output of the machine will

beλ(q0, a1); λ(q1, a2); ..; λ(qn−1, an).

If we set∆ to be{0, 1} then a Mealy machine essentially becomes a finite state sup-

pression automaton, except that it outputs its approval decision instead of copying or sup-

pressing an input event. Given a Mealy machine with∆ = {0, 1}, it is easy to transform it

into a finite state suppression automaton by taking the output sequence of 0’s and 1’s and

composing it with the input sequence using the⊗ operator defined in Section 3.1.4.

A fixed conflict-free policy modelMp = (Π, D, f) with a finite number of states

(where ‘fixed’ means that no more policies will be added to themodel) can be translated

to a Mealy machineMm = (Qm, T, ∆m, δm, λm, qm0) in a straightforward manner. Let

Π = {P1, .., Pn} be the policy automata making up the model. We set∆ = {0, 1}. The

state setQm is set toQ1 × · · · × Qn whereQi is the state set of the corresponding policy

automatonPi. In other words,Mm has the same set of states as the policy modelMp.

The initial stateqm0 is the initial state of the policy model. We setδ andλ to match the

transition of policy model: ifq
a↑x
=⇒ q′ in the policy model (wherex is eitheryes or no)

thenδm(q, a) = q′ andλm(q, a) = 1 or 0, for x = yes or no, respectively. Note that

determining that the policy model in stateq given inputa will emit x and transition to

stateq′ can be precomputed if we fix the set of policy automata; every policy automaton

has a finite amount of votes it may submit, so there are only a finite number of possible

vote combinations, and therefore only a finite number of arguments that will be given to

68

the resolution functionf , which is deterministic. Informally, if we only need to consider a

finite set of defeasible logic votes we can pre-compute a table mapping each possible vote

combination to the corresponding output of the resolution.Using this table in combina-

tion with the policy automata’s transition functions we determine how the Mealy machine

should respond to a given transaction request in a given state.

Instead of translating to a single Mealy machine, we can preserve the modularity of

the policy model by translating to a set of communicating Mealy machines. We can cre-

ate a Mealy machine for each policy automaton where each Mealy machine’sλ function

specifies the policy automaton’s vote on a particular transaction request, and these votes

are then read by a manager Mealy machine, which in turn outputs the result of the resolu-

tion functionf , which is in turn read by the Mealy machines corresponding tothe policy

automata so that they can update their state accordingly. This phased update proceeds as

follows:

1. The Mealy machines corresponding to policy automata readthe current input trans-

action request and output a vote.

2. The manager Mealy machine reads all the current votes and outputs a 0 or 1, indi-

cating whether the transaction should be rejected or approved.

3. The Mealy machines corresponding to policy automata readthe 0 or 1 and update

their state accordingly.

The Mealy machines corresponding to policy automata are constructed in a straightfor-

ward way. The manager Mealy machine can be encoded as a finite state automaton be-

cause, since we have fixed the policy automata, there are onlya finite number of possible

votes. The manager machine only needs to look up the result ofthe resolution function

using a table like the one described in the previous paragraph.

A similar translation will not work if we want our policy model to accept arbitrary

policy automata that have been translated to compatible Mealy machines—even if each

policy automaton has a finite number of states. Judging whether a+∂yes can be inferred

69

set of defeasible logic rules is at least as hard as the graph reachability problem (we can

represent the graph using literals for vertices and strict rules for edges), which is a non-

deterministic log space complete problem. Therefore a manager Mealy machine cannot

resolve arbitrary votes using a finite number of states.

We canconstruct Mealy machines that resolve votes in the binary(D2, f2) and three

valued logic(D3, f3) voting mechanisms. The election voting mechanism(De, fe) and the

prioritized voting mechanism(Dp, fp) cannot be resolved using a Mealy machine because

each mechanism requires a resolver to store arbitrarily large numbers.

3.6.2 What the Model Cannot Express

The policy model formalism is restricted in a number of important ways. A policy model

can only reason about the information available in the transaction requests—if a transac-

tion request fails to identify the merchant involved then a policy about merchants cannot be

enforced by the policy model. This section discusses some other fundamental restrictions

on what the model cannot express or enforce.

Limits on Enforceable Policies

As discussed in Section 3.1, if we consider security policies to be predicates over sets

of transaction sequences then a run-time monitor like a policy model can enforce a strict

subset of security policies. A run-time monitor can only examine a single trace at a time,

and only the prefix of the trace that has already taken place. This makes certain policies

impossible to enforce. In [60] Schneider identifies a class of policies calledproperties, for

which validity solely depends on a single transaction sequence, and a subclass of proper-

ties calledsafety properties, which are properties which in which every prefix of a valid

transaction sequence must also be valid. As discussed in Section 3.1.4, safety properties

are the class of policies which can be enforced by suppression automata, which encompass

policy models. This excludes potentially useful policies like the following, some of which

were discussed earlier:

70

• Anti-bribery policy : Purchases should not depend on previous payments to the

cardholder. For example, paymentsfrom a merchant (eventa) should not necessar-

ily precede paymentsto the same merchant (eventb). A single trace of the form

..; a; ..; b; .. is not a violation of the policy since the payment from the merchant may

be a coincidence. However, if all the purchase histories containing ab were of the

form ..; a; ..; b; .. then the policy would be violated. A policy model tracking trans-

actions could not enforce this policy because it would require monitoring more than

one sequence of transactions4.

• Global spending limit policy: Employee purchases should not exceed $10,000. A

company may distribute programmable payment cards, each linked to the same bank

account, to 10 employees. The company does not want the employees as a group

to spend more than $10,000. As was the case with the anti-bribery limit policy,

enforcing this policy requires observing more than one sequence of transactions,

and therefore cannot be enforced by a single policy model watching one card.

• Loan policy: Any money borrowed must be paid back. For example, a cardholder

is allowed to borrow money—eventb—so long as that money is payed back—event

p—eventually. This policy is a property since the validity ofa sequence of transac-

tions does not depend on the other possible sequences. However, it is not a safety

policy as there are valid sequences where a prefix of the sequence is not valid. The

sequenceb; a; a; p is valid since the borrowed money is payed back, but the prefix

b; a; a is not valid, since money has been borrowed without being returned. A policy

model cannot know that a cardholder will eventually return the money, and there-

fore cannot distinguish betweenp; a; a; b andp; a; a before allowing the cardholder

to borrow money5.

4The anti-bribery policy is similar to an information flow policy about program control flow: we would
like to ensure eventa occurring does not necessarily cause eventb.

5The loan policy corresponds to a liveness property for program behavior—we require that eventp

eventually leads to responseb.

71

• Alcohol purchase policy: Alcohol can only be purchased with a meal. An employer

may wish to restrict alcohol purchases. An alcohol purchase(eventa) can only take

place just before or after food has been purchased (eventb). Consider a transaction

requesta for alcohol which is made before any food purchase. A policy model

cannot authorize the purchase because the cardholder may never buy the required

food. However, the cardholder may be planning to purchase the food immediately

after thea transaction request takes place. As with the previous policy, the policy

model cannot enforce policies in which one event can only take place if a certain

future event also takes place.

If we restrict policy automata to only have a finite number of states, we cannot en-

force any policies that require counting or storing unbounded information. For example,

consider a trading on a margin account where a cardholder canopen an account (event

a), borrow a dollar (eventb), do some investing (eventi), pay back a dollar (eventp) and

close an account (eventc). A policy requires that every dollar that is borrowed must be

a paid back before the account is closed. A sequence ofa; b; b; i; p; p; c is permitted but

a; b; b; i; p; c is not. In general, the policy requires that a transaction sequence must contain

at least as manyp’s asb’s. Since this would require counting the number ofb events this

policy cannot be enforced by a finite state policy model. (However, if we put some bound

on the number of dollars borrowed it is possible to enforce the policy.)

Storing and Retrieving Information

A natural feature one might want to add to a payment card is a system for logging im-

portant events. For example, it is in a merchant’s interest to track a customer’s pur-

chase patterns—such information can yield efficiencies in future stocking and promotional

strategies. A merchant could install an applet on a programmable purchase card (presum-

ably with a customer’s consent in exchange for a discount or other special treatment) that

records the transaction events that occur with the card. At some point in the future the

merchant will retrieve this event log from the card. The policy automata model does not

72

cover such behavior. Chapter 4 discusses some ways a policy automata described in the

Polaris language used by our tool can interact with arbitrary Java code using animported

function. However, our model does not account for any extra API that gives access to

information about the applet’s state. The only side-effects that our model considers are

those that affect future accept/reject decisions.

Transaction Model

The policy model uses a simple transaction model where transaction requests are either

approved or rejected and then never considered again. One can imagine richer models

where a transaction request could be conditionally approved and then approved or rejected

later based on new information. (Such a model would allow ‘transactions’ in the database

sense of the word: a sequence of events that may not be simultaneous but are grouped

together as an atomic operation.) For example, it would be useful if an on-card policy that

recognizes the card is being used fraudulently could re-examine previous purchases and

retroactively reject those that now appear to be fraudulent. On the other hand, we may

wish to retroactively approve a purchase that could not havebeen authorized earlier; the

alcohol policy of Section 3.6.2 could be enforced by conditionally approving an alcohol

purchase and then confirming this purchase when it is clear the alcohol is being purchased

as part of a meal.

Communication Between Policy Automata

The composition mechanism in the policy model formalism allows little communication

between policy automata; a policy submits an anonymous vote, which may affect the

result of the resolution function, and this result gets passed to other policy automata. This

restricted communication channel was by design, as a simplecomposition mechanism

makes analyzing the system easier, and many useful policiescan still be represented as

policy automata (as demonstrated in Chapter 4). However, wecan imagine situations

where a richer form of communication may be desirable.

73

For example, we could allow a policy automaton to exchange messages of some sort

with other policy automata. This would allow policies to gather information about what

other automata are present in the model, or what informationhas been gathered by other

policies. This data could be used to determine which vote to submit. For example, consider

a policy automatonAmax that wants to maximize the amount of money spent. Normally,

such a policy would vote to approve all transaction requests. However, ifAmax detected

another policy automatonA3 which limits the cardholder to at most three purchases, then

Amax could modify its vote so that low cost purchases are rejected. This would encourage

the cardholder to spend more on the allowed three purchases.

Similarly, a policy automaton could delegate certain information gathering responsi-

bilities to another policy automaton. For example, severalpolicy automataA1, .., Ak may

want to adjust their votes and current states depending on whether or not the transaction re-

quests is considered to be an emergency—for example, a payment in a hospital emergency

room. However, the decision on what constitutes an emergency may require a complex

examination of the past sequence of transaction requests. Reproducing such functionality

in all k automata is inefficient—it would be simpler to have one automaton which decides

whether a given event constitutes emergency and then broadcasts that information to the

other automata. (In Section 4.2 there is an example that shows how this can be approxi-

mated using the defeasible logic voting mechanism, but the information can only be sent

to the resolution function, not directly to the automata. A similar partial solution is possi-

ble using imported functions, also described in Section 4.2—but such functionality would

be outside the formal model.)

Our communication mechanisms could be enhanced with some sort of authentication.

In the policy model formalism any policy automata can submitany vote. It could be useful

to restrict votes based on the automata that submit them. This could be used in conjunction

with the emergency signaling policy automaton described above—only a privileged policy

automata could submit a vote or broadcast a message indicating that a given transaction

request is an emergency. This authentication mechanism could limit the disruption caused

74

by a user adding a poorly designed or malicious policy automaton to the card.

3.7 Summary

In this chapter we presented the security automata formalisms of Schneider [60] and Lig-

atti et al. [41] and adapted and extended them for our programmable purchase card appli-

cation. We showed that many of the policy classes for run-time monitors (for example,

liveness) have corresponding policies in the world of purchasing policies. Our extensions

included the notion ofgraceful enforcement, which requires an automaton to make mini-

mal changes while ensuring that a cardholder obeys a policy.We proved that suppression

automata are capable of gracefully enforcing all safety properties.

Ligatti et al. do not discuss composition of suppression automata. We showed how

a naive composition is problematic. To solve this problem, we use a voting mechanism

based on defeasible logic to compose individualpolicy automatainto apolicy modelwhich

is essentially a suppression automaton. This formal model is capable of describing an

overall purchase policy as a composition of smaller modularsub-policies.

With this formal definition in hand we investigated various formal properties that cor-

respond to real world properties that are of interest to policy designers: conflict-freedom,

redundancy and refinement. We also used this formal definition to illustrate the limits of

our policy enforcement mechanism.

75

Chapter 4

Language

Instead of encoding policy automata as a set of mathematicalentities as described in Sec-

tion 3.3.5 we use a less cumbersome graphical language that is closer to popular model-

ing languages. There is a straightforward correspondence between this language and the

mathematical representation discussed in Chapter 3. In this chapter we present this lan-

guage and discuss its suitability for encoding purchasing policies from a more empirical

and engineering-centered perspective, in contrast to the more formal discussion in Chap-

ter 3. We discuss a number of example policies, including a set of policies taken from a

real enterprise purchase card. We also discuss our defeasible logic voting mechanism and

compare it to other voting mechanisms.

4.1 Description of the Language

We split the state of a policy automaton into two components:modesandvariables. If

M is the set of modes andX is the set of possible values stored by variables then the

automaton’s set of states isQ = M ×X. Modes are akin to control points while variables

record data.

The language is a mix of graphical and textual notation. Figure 4.1 shows the graphical

interface used to create a policy model. We present the syntax of the language in this

76

Figure 4.1: Polaris automata editor

type-decl*

f*

request-type

automaton
automaton
 automaton
automaton
 automaton
automaton
...

Figure 4.2: Structure of a policy model

section using a both graphical and text elements. The graphical elements are presented

in figures while the textual elements are described in Table 4.1. We use the notation

Z∗ to mean zero or moreZ ’s in sequence. We use the semicolon “;” as a separator for

concatenated elements, and “|” indicates a choice between elements.

Figure 4.2 shows the syntax used to specify a policy model. A policy model consists

of four elements: an optional list of type declarations, a optional list of imported function

types, a type specifying the transaction request structure, and a set of policy automata.

The type declarations, imported function types and transaction request type are specified

textually–their syntax is given in Table 4.1. The type declarations allow a policy developer

to define types that are useful for the policies; for example,a policy developer can define

an enumerated type with three values{EU, US, OTHER} that indicate where a purchase

is taking place. A developer can also define arrays and recordtypes with fields to make

77

Type Declaration type-decl ::= type id is τ
Imported Function f ::= import id : τ × · · · × τ → τ

Request Type request-type ::= request is τ
Type τ ::= id | bool

Enumerated Type | [id , .., id]
Range Type | (n..n)
Array Type | channel[n, τ]

Record Type | record[id : τ ; ..; id : τ]
Number n ∈ 1,2,. . .

Identifier id ∈ the set of non-numeric strings
Variable Declarations var-decl-list ::= id := e : τ ; ..; id := e : τ

Guard guard ::= e
Action List action-list ::= a := e; ..; a := e

Assignee a ::= id | a.id | a[e]
Vote Statement vote-stmt ::= if e then vt

Vote vt ::= r; ..; r
Defeasible Logic Rule r ::= l, .., l � l | {} � l

DL Implication � ::= -> | => | ∼>
DL Literal l ::= id | ∼ id

Expression e ::= true | false | n | id | e op e | − e
| id(e, .., e)| e.id | e[e] | ∼ e
| if e then e else e fi

Operator op ::= +| − | & | ∨ | == | ! = | < | > | ≤ | ≥

Table 4.1: The textual elements of the language used to encode policy models

78

var-decl-list

...
mode
 mode
 mode
 mode

Figure 4.3: Structure of a policy automaton

storing data easier. For example, a developer could define a record type with fields for year,

month and day so that dates can be recorded and modified conveniently. The imported

function types specify which functions are available from the environment and what their

arguments and return types are. Imported functions are discussed below in Section 4.1.1.

The transaction request type specifies what information is available about the transaction–

this determines what the setT of possible transaction requests contains. For example, a

transaction request could be a record with three fields: the price of an item (for example,

$30), an identifier specifying the merchant, and an integer giving the current time. The

transaction request is referenced using a special identifier “ t ”. For example, in a policy

automaton might set a variable with a statement “x:=t.price ” which indicates that the

variablex will be set to the price of the current transaction request.

As mentioned above, the policy automata are specified graphically by drawing a rect-

angle. Inside this rectangle the policy developer draws a set of rectangles representing

modes, and arrows connecting the modes. The policy automaton rectangle can be anno-

tated with some text indicating the variables stored by the automaton. Figure 4.3 shows

the structure of an automaton. Both the type and the initial value is specified for all of an

automaton’s variables.

The δ transition function is specified by drawing arrows from one mode to another.

Figure 4.4a shows the general structure of an arrow. Each arrow is annotated with a

guard, which is a boolean expression involving the variables of the policy automaton, the

transaction request and a special boolean variable “yes” which is true if and only if the last

transaction request was approved. The boolean expression is similar to the expressions in

79

vote-stmt*
guard;

action-list;

mode
 mode

a
 b

Figure 4.4: Structure of (a) an arrow and (b) a mode

high-level programming languages like Java or C. In addition to the guard, the arrow may

contain a list ofactions, which specify updated values for the variables. For example, an

arrow fromm to m′ could be annotated with the guard “t.price<30 & count==1

& yes ”, where count is a variable andt is a transaction request. It may also have a

single element action list “count:=2 ”. Such an arrow gives a partial description ofδ,

mapping(q, t, yes) to (q′) whereq is a state with modem and the variablecount = 1, t is

a transaction request with a price under 30, and whereq′ is a state where the active mode

is m′ and the variables hold the same values as in stateq except thatcount is now 2.

There is a special arrow with no source mode that indicates which mode is the initial

mode of an automaton.

The voting functionγ is specified by annotating the mode rectangles withvote state-

ments, as shown in Figure 4.4b. Each vote statement has a boolean expression (like the

guard attached to arrows) referring to the current transaction request and the variables of

the automaton, and a votevt. If a policy automaton is in a modem which is annotated

with vote statementg and a transaction request arrives that, along with the current variable

settings, makes the boolean expression true, then votevt becomes the policy automaton’s

vote. Votes are lists of defeasible logic rules written in the syntax of the Deimos defea-

sible logic query tool [48]. Each vote statement therefore gives a partial description of

γ. Figure 4.1 shows a list with one rule that has been attached to the “bonus purchase

allowed” mode. The expression is “price < 100 ” and the vote is “{}=> yes ”, which

is {} ⇒ yes written using ASCII characters. The rule essentially says “concludeyes

tentatively unless others override.”

80

4.1.1 Imported Functions

The Polaris language is intended to capture the core behavior of a policy which depends

on the history of previous transactions. The language is notintended as a general purpose

language for arbitrary control flow, data manipulation or logging. However, a policy may

need to access or manipulate data in order to make decisions about permitting a transac-

tion. We feel that such functionality should be implementedin a language appropriate for

that class of behavior, and then integrated with policies described in the Polaris language.

The Polaris language offers an interface to general purposeprogramming languages

throughimported functions. An imported function is declared in the policy model and can

be called in any expression in any policy automaton. Imported functions are intended to

allow policy designers to incorporate functionality that cannot be expressed succinctly, or

expressed at all, in the Polaris language. For example, an expression to check if a merchant

is on a list of approved merchants can be written as “isApproved(t.merch) ” instead

of writing a long expression of the form

t.merch==SEARS ∨ t.merch==WALMART ∨ ...

A policy designer could also use an imported function to check cryptographic properties of

transaction request data, something which would be difficult or impossible using Polaris’

syntax.

The actual implementation of the function must be supplied through some mecha-

nism external to Polaris—for example, it could be written bythe policy developer—and

compiled or linked with the Polaris-generated executable code implementing the policy

automata. In our current implementation for the Java Card platform (described in detail in

Chapter 5), the policy designer writes a Java Card compliantJava implementation of the

function which matches the template generated by the Polaris compiler. This Java imple-

mentation is then combined with the Java files produced by thePolaris compiler before

Java compilation.

81

4.1.2 Translation to Formal Policy Automata

The Polaris language is intended to be user-friendly way of specifying the formal model

described in Chapter 3. Everything in the Polaris language can be easily mapped to the

policy automata formalism from Section 3.3.5, with the significant exception of imported

functions. The semantics of the language described in this chapter is defined by trans-

lating the language to the formal model, and then applying the semantics described in

Section 3.3.6.

The setT of transaction requests is specified by the request type; if the transaction

request has typeτ thenT is the set of possible values that a variable of typeτ can take.

Recall that a policy automaton is a four-tuple(Q, q0, γ, δ). A policy automaton in the

Polaris language defines a setM of modes and a list of typed variablesv1, . . . , vn. Let Xi

be the set of possible values the variablevi may take. The formal automaton’s set of states

Q is simplyM ×X1 × . . .×Xn. The initial stateq0 is (m0, v1,0, . . . , vn,0) wherem0 is the

initial mode (as indicated by the special arrow with no source mode) andvi,0 is the initial

value of the variablevi, which is specified when the variable is declared.

As mentioned above, the voting functionγ : Q × T → D is specified by the col-

lected vote statements attached to each mode. Each mode’s vote statement gives a partial

description ofγ, indicating howγ behaves for states composed of that mode. If no vote

statement is attached to a modem thenγ maps all states wherem is the mode component

to a default empty vote containing no rules.

The transition functionδ : Q × T × {yes, no} → Q is similarly specified by the

collected arrows in an automaton. Each arrow gives a partialdescription ofδ, indicating

how the function behaves in the source mode of that arrow. If an arrow starts atm and

ends atm′ with guarde and variable updatesv1 := x′
1, . . . , vn := x′

n thenδ(q, t, a) =

(m′, x′
1, . . . , x

′
n) if q = (m, x1, . . . , xn) and the arrow’s guard evaluates to true when the

variables, the transaction requestt and the specialyes variable (recall thatyes is true if the

request was approved) are substituted with their respective values. If no arrow starts from

the mode of the current state, or if no such arrow has a guard that evaluates to true, then

82

the state remains unchanged:δ(q, t, a) = q.

Semantics and Analysis of Imported Function

If the policy model has imported functions then theγ andδ depend on what values the

functions return at runtime. For example, if an arrow leading from m to m′ has a guard

“E(t)” where “E” is an imported function returning true or false, then (assuming the policy

automaton has no variables)δ maps(m, t, a) to m′ if “E” returns true.

Polaris makes certain assumptions about the behavior of imported functions. First of

all, we assume imported functions will eventually terminate and return a value without

throwing exceptions. We assume the function will return a value that is of the proper

type. We also assume that the imported code will not interfere with the code generated by

compiling the policy automata.

Even under those assumptions we cannot predict exactly how an imported function

will behave. If we assume that the “E(t)” predicate satisfiesour assumptions then it is

clear how the policy automaton will behave at runtime, when the code implementing the

predicate is available. However, our analysis algorithms cannot precisely model whether

a given argument will satisfy the predicate.

There are a number of strategies for accommodating importedfunctions in the analy-

sis. The analysis algorithm can leave such predicates uninterpreted and conservatively ex-

plores both possibilities. For example, the procedure thatchecks conflict-freedom would

not actually check that a seller is on the list of approved vendors. Instead, the analysis

checks that there are no conflicts whether or not the seller isapproved. If this conservative

analysis yields conflicts that are not actually possible then the policy writer can include

simple constraints on the predicates to eliminate some spurious counterexamples, or bring

some of the external code’s functionality into the policy automaton by replacing a call to

E(...) with an expression of the form

if (t.merch==SEARS) then true else E(t.merch) fi

83

so that Polaris can model enough of the function’s behavior to avoid a spurious counterex-

ample.

A policy developer may wish to mark an imported function as a true function (that is,

the function will return the same value at different invocations with the same arguments),

and Polaris could exploit this in the analysis or code-generation (for example, the results

of such a function could be cached safely).

Some of the restrictions on the imported code, such as not modifying data that is used

by the compiled automata or returning data of the proper type, is partially enforced by

the Java type system—we mark variables in generated code as ‘private’, and the imple-

mentation of the imported code must match the method type or it will not compile. If

the imported code throws checked exceptions then the Java compiler will show an error

instead of compiling the policy (the imported code may stillthrow run-time exceptions).

Other properties, such as termination, satisfying any constraints specified by the policy de-

signer, or tighter constraints on what values the imported code may return, could perhaps

be checked by a Java analysis tool like a model checker or static analysis tool. The Po-

laris code generator could generate JML[12] annotations inthe templates of the imported

methods to aid a policy designer validate an implementation.

4.2 Example: A Payment Card Policy

We now show an example of a policy model made up of the following policies:

P3 Allow up to 3 purchases per day.

PE Guarantee payment to emergency services twice.

Pcc A cash card: spend no more than $500 total.

PN No alcohol can be purchased.

Pt Prevent purchases of prescription drugs which conflict withthe anti-depressant Tofranil.

84

P
E
:

 no variables

P
3
:

 var time:=0

mode 2

mode 0

if true then {} => yes

end mode

if true then {} => yes
if (t.time-time<24)

 then {} ~> ~yes

else {}=>yes

mode 1

if true then {} => yes

yes;

yes;

yes;

time:=t.time

mode 0

if E(t.seller)

 then {}->yes; {}->e;

 else {}->~e

yes &

E(t.seller);

end mode

if true then {}->~e

yes &

E(t.seller);

mode 1

if E(t.seller)

 then {}->yes; {}->e;

 else {}->~e

yes & (t.time-time>=24);

time:=t.time

Imported functions:

 E:merchantType -> bool

request is record [price:int; seller:merchantType; time:int;

 type:[ALCOHOL, MAOI, ALBUTEROL, NORMAL]]

mode 0

if t.price<=total

 then {}=>yes

 else {}~>~yes

P
cc
 :

 var total:= 500

yes & total>t.price;

total := total - t.price

yes &

total<=t.price;

end mode

if true then

{} ~> ~yes

mode 0

if (t.type==ALCOHOL)

then ~e->~yes

P
N
:

 no variables

mode 0

if (t.type==MAOI) then {} ->~ yes

if (t.type==ALBUTEROL) then {} ~>~ yes

else {} -> tof

P
t
:

 no variables

Figure 4.5: Example payment card policy model

85

The last policy,Pt, deserves some explanation. Tofranil is an prescription drug used to

treat depression [62]. It can be fatal when combined with a drug that is a monoamine ox-

idase inhibitor (MAOI). We envisionPt being installed by a doctor or a pharmacist when

the cardholder begins taking Tofranil. This policy will prevent purchases of drugs that

conflict with Tofranil, thereby reducing the risk that a mistake by a doctor or pharmacist

leads to a fatal drug interaction. Tofranil can also interact with another drug called Al-

buterol, but the interaction is less severe so our policy automaton is not as insistent about

rejecting purchases of Albuterol.

Figure 4.5 shows these five policy automata in a simplified form of the graphical lan-

guage accepted by our prototype. Variables are declared at the left of the diagram, along

with the initial value of the variable. For example, the initial value ofPcc ’s variabletotal

is 500.

Modes are indicated by rectangles with solid lines. A mode’srules are contained in a

rectangle with a dotted border within the mode. Rules are written in the form “if expres-

sion then vote”. The expressionE(t.seller) used in the rules ofPE is a predicate

that is true ift.seller is contained in a set of approved emergency service sellers (for

example, hospitals and ambulance companies). In this expression the “E(..) ” is an in-

vocation of an imported function that is supplied from a external library or implemented

by the policy designer. The wordALCOHOL in the rule ofPN refers to a standard product

identifier that identifies a purchase as alcohol. Similarly,the wordsMAOI andALBUTEROL

in Pt refer to standard identifiers for particular classes of drugs.

The rule’svoteis written as a list of rules of defeasible logic. We describea few of the

votes that appear in the example here.

{}=>yes the transaction request should be approved tentatively butcan be overridden

{}∼>∼yes override a tentative approval

{}->yes;{}->e approve the transaction and assert that the literale is true. Makinge

true signals to other automata that the transaction requestis an emergency.

86

∼e->∼yes if e is not true then reject the transaction request. This vote allows PN to

overrideP3 andPcc without conflicting withPE.

When no rule applies in a given state then an empty set of defeasible logic rules is used as

the vote.

As described above, arrows represent transitions between modes. The annotation at-

tached to the arrow has the form “expression; action-list”. The expressionindicates when

that transition is enabled and theaction-list determines how the variables are updated.

For example, inPcc the transition with an expression “yes & total <= t.price ” is

enabled when a transaction request has been approved and thetotal is equal to the transac-

tion price. If the action-list is empty then no change will bemade to the variables. When

there is no enabled arrow starting at a mode then no update is made to variables or modes

when the transaction request is approved or rejected. For example, ifPcc is in mode 0

and a transaction request is rejected then the variabletotal is left unchanged and the

automaton stays in mode 0.

We now sketch how the policies in Figure 4.5 react when given the following sequence

of transaction requests:t1, a $40 alcohol purchase which is not an emergency; andt2, a

$300 bicycle purchase. The requestt1 has its ‘type’ field set toALCOHOL so policyPN

will vote ∼e-> ∼yes , while PE will vote {}-> ∼e because the request is not from an

emergency seller (i.e.E(t.seller) is false). The defeasible logic engine will rec-

ognize that these two votes form a proof of∼yes . PoliciesPcc andP3 both contribute

{}=>yes as votes, but this defeasible rule is overridden by the strict rule in PN ’s vote.

PolicyPt contributes a vote{}->tof , but this vote does lead to a proof ofyes or∼yes .

Since∼yes has been defeasibly proved andyes has not been proved we reject the trans-

action. All the arrows in our policies are enabled only when atransaction is accepted so

no updates are made to variable or modes after the first transaction request is rejected.

Whent2 is submitted the policyPcc supplies the vote{}=>yes because the price of

$300 is below the value of the variabletotal , which was set to 500.P3 submits the

same vote asPcc. Since this purchase does not involve alcohol the policyPN has no

87

P
D
:

mode 0

if t.in then {} => ~yes

P
Web
 :

mode 0

if t.in & t.dstport==80 then

{} ->yes

Figure 4.6: A simple firewall policy model allowing incomingpackets destined for port
80

specific vote—a default empty vote (i.e. a zero-length list of defeasible logic rules) is

therefore submitted.PE submits the vote{}-> ∼e since the seller is not an emergency

seller. PolicyPt again submits{}->tof since the purchase involves neither Albuterol nor

an MAOI. The defeasible logic engine will show thatyes is defeasibly provable since no

votes overrulePcc’s vote. Nor do any votes conclude∼yes so the transaction is approved.

This triggersP3 to move from mode 0 to mode 1 and update itstime variable to the time

of the transaction.PE will not change modes because the seller is not an emergency seller.

Pcc will stay in mode 0 but it will change the value of its variabletotal from 500 to 200.

PN andPt each have one mode and no variables so they do not update theirstate.

4.3 Example: Network Access Policies

We think that our formal framework is general enough to be applied (perhaps with minor

modifications) in domains other than payment cards. In particular, we feel that network

access control is a suitable application. In this section wepresent some network access

policies that have been encoded in the Polaris language.

A common firewall configuration blocks all incoming IP packets unless they are headed

for a particular server that is listening on a specific port. For example, a firewall protect-

ing a web server may block all packets that are destined for any port other than 80, the

standard HTTP server port. We can represent such a policy using the two policy automata

pictured in Figure 4.6. The automatonPD sets the default policy: tentatively reject all

incoming packets (that is, packets where thein field of the transaction request is set to

88

P
S
:

 var flow

mode 0

if t.in then {}=>~yes

mode 1

if flow==t.flow then

{}->yes

yes &

t.out;

flow:=t.flow

yes & t.end

Figure 4.7: A stateful firewall policy automaton allowing incoming response traffic

true). The automatonPWeb overridesPD (since its vote uses a strict rule) in the case that

the incoming packet is destined for port 80.

The policies in Figure 4.6 do not have any non-trivial state.We can use a stateful policy

automaton to model a policy that allows incoming packets only if they are responding to

a previous packet that was sent out. Policies like this are used to allow users to contact

external web servers without allowing external entities tocontact internal servers. The

policy is shown in Figure 4.7. This automaton tentatively rejects incoming packets until

an outgoing packet is seen. The automaton then records the flow information for that

outgoing packet and allows response traffic in that flow untila packet is seen that ends the

connection, when the automaton returns to its original state.

We can use a similar automaton to specify a web server access policy. Consider a

news web site that embeds images in its web pages. HTML allowsa content developer to

embed images from arbitrary URLs in a web page, so its relatively easy for other web sites

to embed pictures from the news website in their own pages. The news web site may want

to ensure (for licensing reasons, for example) that its images only appear embedded in its

own pages. The policy automaton in Figure 4.8 implements such a policy. The automaton

begins in a mode that refuses access for files with a JPG extension. When a client requests

an HTML file the automaton moves to a state where all requests are tentatively allowed

(allowing other policies to restrict access for other reasons).

89

P
Img
:

 var flow

mode 0

if endsWithJPG(t.url)

then {}->~yes

mode 1

if flow==t.flow then

{}=>yes

yes &

endsWithHTML(t.url)

yes & t.end

t.flow:=flow

Figure 4.8: A web server access policy automaton protectingimage files

4.4 Evaluation of the Language

In this section we attempt to evaluate the language using a number of approaches. In

Section 3.6.2 we examined some of the formal limitations on what can be expressed using

the policy model formalism. In this section we will use a moreinformal and empirical

approach. We give some examples of broad classes of policieswhich can enforced with

the language. We also examine the University of Pennsylvania’s purchase card system

and show how many of the policies for that system can be represented in the Polaris

language. Finally, we illustrate the effectiveness of the defeasible logic voting mechanism

by comparing it to some other voting mechanisms.

4.4.1 Policies That Can Be Encoded

The Polaris policy language is capable of representing several useful purchase policy

types, including:

• Approved/Rejected Merchants: Polaris can encode a policy that only approves

purchases from a list of merchants, or merchant types (for example, hotels or fast

food restaurants). Polaris can also encode a policy that excludes purchases from a

list of merchants or merchant types. Figure 4.9a shows an example of a policy that

excludes purchases from airlines and taxicabs. TheMCC field (Merchant Category

90

mode 0

if ((t.mcc>2999) & (t.mcc<3300))

 then {}=>~yes

if (t.mcc==4121) then {}=>~yes

else {}=>yes

no variables

mode 0

if (t.price>1000) then {} =>~ yes

else {} => yes

no variables

a

b

mode 0

if ((t.local_hour>20) &(t.local_hour<6))

 then {} =>~ yes

else {} => yes

no variables

c

Figure 4.9: Purchase policy automata for (a) rejecting certain classes of merchants, (b)
imposing a per transaction spending limit, and (c) preventing purchases made at night.

91

Code) referred to in the policy is a standard identifier assigned by credit card com-

panies to classify merchants by their type of business [33].An MCC in the closed

interval [3000,3299] indicates the merchant is an airline,and anMCC of 4121 indi-

cates that the merchant is a taxi company.

• Approved/Rejected Products: We can encode a policy which excludes or includes

certain products. The policyPN in Section 4.2 is an example of such a policy.

• Value Limit : We can encode a policy that sets an upper limit for the money spent in

a single transaction. Figure 4.9b shows an example of such a policy which ensures

that no more than $1000 is spent in a single transaction. Additionally, we can encode

a policy that resets the limit after a period of time—for example, allowing no more

than $2000 to be spent in a week.

• Limit the Number of Transactions: We can encode a policy that limits how many

transactions can take place using a card. As was the case for the value limit policy,

we can reset the limit after a period of time. The policyP3 in Section 4.2 is an

example of such a policy, which has limits a card to three purchases per day.

• Cash Card Policy: Polaris can encode policies that limit a card to a set limit of all

total purchases. The policyPcc in Section 4.2 is an example of such a policy, which

has a limit of $300.

• Time Windows: We can encode a policy which restricts purchases at certaintimes

of day. Figure 4.9c shows a policy which prevents purchases between 9pm and 6am.

• Drug Interactions: Polaris can encode policies that guard against harmful drug

interactions. PolicyPt in Section 4.2 is an example of such a policy concerning the

drug Tofranil.

92

4.4.2 The Penn Purchasing Card System

In this section we describe the policies that the Universityof Pennsylvania (Penn) applies

to use of its corporate purchasing card, the Procard. We thenexamine how these policies

can be encoded as a Polaris programmable purchasing card.

In the twelve months to September 2004, Penn purchasing spent more than $82 million

in more than 115,000 transactions, of which almost $464,000was spent in more than 2200

transactions using the Procard [57]. Most Penn purchases are made through the BEN Buys

and Penn Marketplace systems, which are electronic purchase systems in which trusted

suppliers make arrangements to participate. The Procard isintended for purchases with

vendors who have not yet taken steps to be included in the electronic marketplace. A

separate purchase card called the Fleet Fuel Card is available for purchases of fuel and

vehicle maintenance.

The policies governing the use of the Procard and Fuel Cards are described in the

Purchasing Card Cardholder Guide [69] and on the Penn purchasing website (http:

//www.purchasing.upenn.edu). We have examined these documents and ex-

tracted a reasonably complete set of policies for the card. The Procard policies are sum-

marized in Table 4.2 and the Fuel Card policies are summarized in Table 4.3. The “Com-

modities Matrix” mentioned in PC5 is a table showing which expenditures can be spent on

which purchasing method. For example, alcoholic beveragesmust be purchased through

Travel Office mechanisms (the Travel Office handles entertainment expenses) but cannot

be bought through the BEN Buys system nor by using a Procard. Bottled water must be

bought through the BEN Buys system, not the Procard. Books can be bought through ei-

ther system, while box lunches can be bought only through theProcard. The Commodities

Matrix lists 101 categories, of which 25 are permitted for Procard purchases.

At the time of writing, policy PC6 only applies to one supplier. Policy PC7 requires

that purchases that can be made through Penn Marketplace must be made using that system

instead of with a Procard. There are 102 suppliers availablethrough the Penn Marketplace

system. There are 213 suppliers on the list of deactivated suppliers mentioned in policy

93

PC1. Only the person listed on the card may use the card.

PC2. A suspended or terminated employee may not use the card.

PC3. Purchases must not be for the sole benefit of the cardholder.

PC4. Purchases must not be split into multiple transactionsto avoid a per transac-
tion threshold.

PC5. Purchases must only be made for commodities listed as permissible in the
Commodities Matrix.

PC6. Purchases must be not made from a supplier who has refused to take part in
the Penn Marketplace program.

PC7. Purchases must be not made from a supplier who is taking part in the Penn
Marketplace program.

PC8. Purchases must not be made from suppliers who have been deactivated from
the BEN Buys Supplier Database.

PC9. The total spending in a month must not exceed $5,000. If necessary, this limit
can be raised with approval from the appropriate senior financial officer.

PC10. A single transaction must not exceed $1,000.

PC11. No more than 800 transactions can be carried out per month.

PC12. No more than 25 transactions can be carried out in a single day.

Table 4.2: University of Pennsylvania purchase card policy

94

PC8.

There are two kinds of Fuel Cards available. One is intended only for fuel purchases,

while the other is for fuel and maintenance or repairs for Penn vehicles. In Table 4.3,

policy F1 comes in two variations, only one of which applies to a given card; a card will

either enforce F1a or F1b. Similarly, policy FM1 comes in twovariations, one of which

applies to a given card.

In Table 4.4 we show the degree to which each of these policiescan be encoded in

Polaris for use on a programmable payment card. Since policies FM1-7 are essentially

the same as policies F1-7 we omit them from the table—any policy FMn can be encoded

if and only if the policy Fn can be. We classify policies using two criteria: whether the

policy can be exactly encoded or just approximated, and how much we would have to

extend the payment infrastructure. For the first criteria, we mark the policy with an X if

the policy can be encoded exactly—in other words, a policy automaton will allow behavior

permitted by the policy and prevent behavior that violates the policy. We mark the policy

with an A if the policy cannot be enforced exactly but we can approximate the policy; this

approximation may allow some behavior that violates the policy and exclude behavior that

the policy allows, but it can help discourage violations of the policy.

The second criteria indicates what kind of information mustbe supplied to the card for

the card to enforce the policy. We assume that a programmablepayment card infrastruc-

ture would make the following information available to the payment card, all of which is

available in current credit card transaction records:

• The price

• The time and date

• An identifier specifying the merchant

• The appropriate Merchant Category Code (MCC)

We envision two possible extensions of this infrastructure:

95

Fuel Card policy for fuel-only cards:

F1. (a) The card can only be used by the person named on the cardor (b) the card
can only be used for one particular vehicle.

F2. The total spending in a month must not exceed $2,500.

F3. A single transaction must not exceed $50.

F4. No more than 50 transactions can be carried out per month.

F5. No more than 5 transactions can be carried out in a single day.

F6. The card can only be used for fuel purchases.

F7. Purchases must not be split into multiple transactions to avoid a per transac-
tion threshold.

Fuel Card policy for fuel and maintenance cards:

FM1. (a) The card can only be used by the person named on the card or (b) the card
can only be used for one particular vehicle.

FM2. The total spending in a month must not exceed $5,000.

FM3. A single transaction must not exceed $1,000.

FM4. No more than 50 transactions can be carried out per month.

FM5. No more than 5 transactions can be carried out in a singleday.

FM6. The card can only be used for fuel, maintenance or repairpurchases.

FM7. Purchases must not be split into multiple transactionsto avoid a per transac-
tion threshold.

Table 4.3: The policies of the University of Pennsylvania Fuel Card

96

can be encoded?
policy yes w/ list of items w/ identification no
PC1 X
PC2 X
PC3 X
PC4 A
PC5 A X
PC6 X
PC7 X
PC8 X
PC9 X
PC10 X
PC11 X
PC12 X
F1a X
F1b X
F2 X
F3 X
F4 X
F5 X
F6 A X
F7 A

X: Policy can be encoded exactly.
A Policy can be approximated.

w/ list of items: Assumes card is supplied with data listing
the items or services being purchased.

w/ identification: Assumes card is supplied with authenticated
information about the person or vehicle
involved in the transaction.

Table 4.4: Which Penn purchasing card policies can and cannot be encoded as Polaris
policy automata.

97

• List of Items: A list of items or services being purchased is available to the card.

• Identification : The card can authenticate the cardholder (perhaps throughbiometric

means) and the vehicle being serviced (perhaps with an RFID or barcode on the

vehicle).

We consider the first extension to be a minor extension, sincefor many businesses the list

of items is readily available in electronic form.

Most policies can be enforced exactly with no modification tothis infrastructure; these

are marked with an ‘X’ in the ‘yes’ column. infrastructure. Other policies require one of

the envisioned extensions. With a list of items available toa card, a policy automaton can

exactly encode policies PC5, F6 and FM6 by checking that all the purchased items are

on the list of approved commodities. Without information about individual purchases, a

policy automaton can approximate the policy by assuming a correlation between the item

being bought and theMCC of the merchant. For example, if theMCC of a transaction is

a code for airlines then it is likely that a ticket for air travel is being bought—a policy

automaton that forbids airline tickets can safely forbid any purchases from an merchant

marked as an airline. The correlation betweenMCC and item is not always so strong. A

gas station may sell snacks in addition to fuel, so a fuel cardwhich allows charges from

gas stationMCCs may inadvertently allow some purchases which violate the gas-only

policy F6. For stores like Walmart or Amazon, which offer a huge variety of merchandise,

the MCC will give little information about what is actually being bought. We therefore

mark policies PC5, F6 and FM6 with an ‘A’ in the ‘yes’ column because we can use the

MCC-item correlation to enforce an approximation of the policywith no change in the

payment infrastructure. Figure 4.10 shows policy PC5 encoded as a policy automaton.

Since policies F6 and FM6 are so similar to PC5 we do not illustrate how they can be

encoded.

Policies PC1, F1a, F1b, FM1a and FM1b are only possible to enforce if we have

information about the identity of cardholders and vehiclesbeing serviced.

Policy PC4 can only be approximated by a policy automaton. This policy is similar to

98

the alcohol purchase policy (which forbids alcohol purchases made separate from a meal)

discussed in Section 3.6.2—a violation of the policy only becomes apparent after multiple

transactions have taken place, so a policy automaton has no reason to forbid the first

transaction involved in the violation. However, we could encode a policy automaton that

recognizes a series of transactions with the same merchant made in a short period of time

that, when summed, breach the per-transaction threshold. For example, two purchases

from the same merchant each for $900 and made within 5 minutesof each other would

probably be a violation of the policy since they seem to avoidthe $1000 transaction limit.

Figure 4.10 shows an automaton that encodes this restriction. Such an automaton only

approximates PC4, since a cardholder could wait a longer time between the transactions

or buy the desired items from a number of merchants. We cannotimagine any reasonable

extension of the payment infrastructure that would enable apolicy automaton to better

enforce PC4. Indeed, it is difficult to imagine any mechanical means for checking PC4 as

it seems like there will always be cases where deciding if thepolicy has been violated is

purely a matter of judgment.

Policies PC2 and PC3 are outside the scope of what can be enforced by a Polaris

programmable payment card system. A smart card has no way of knowing whether an

employee has been terminated, since the status of the employee can change without the

change being communicated to the card. Nor can Polaris encode a policy that forces

a cardholder to only purchase items that benefit Penn insteadof the cardholder—it is

difficult to imagine a smart card could infer in general that apurchase is being made that

is not for Penn’s benefit.

Of the 12 Procard policies, 10 can be encoded, either approximately or exactly, as

Polaris policy automata in some form, possibly with additions to the payment infrastruc-

ture. In addition to the policies discussed above, Figures 4.10 and 4.11 shows automata

for all the Procard policies that are encodable. Of the 16 Fuel Card policies, all 16 can

be encoded as Polaris policy automata, though two policies can only be encoded as ap-

proximations of the original policy, and six of the policiesrequire some additions to the

99

mode 0

if (deactivated(t.merch))

then {}=>~yes

 no variables
PC8

yes & ((t.merch!=merch) V

(t.hour!=hour) V (t.day!=day));

total:=t.price;

merch:=t.merch;

time:=t.hour;

day:=t.day

variables:

var total:= 0:int

var merch:=null:merchID

var hour:=0:int

var day:=0:int

yes;

total:=t.price;

merch:=t.merch;

time:=t.hour;

day:=t.day

PC4

(approximation)

~yes & ((t.merch!=merch)

 V (t.hour!=hour)

 V (t.day!=day))

yes & (~((t.merch!=merch)

 V (t.hour!=hour)

 V (t.day!=day)));

total:=total+t.price

mode 0

end mode

if ((t.merch==merch) &

 (t.price+total>1000) &

 (t.hour==hour) &

 (t.day==day))

then {} => ~yes

mode 0

if (inPennMkt(t.merch))

then {}=>~yes

 no variables
PC7

mode 0

if (t.merch==REFUSED_INC)

then {}=>~yes

 no variables
PC6

mode 0

if (containsBanned(t.items))

then {}=>~yes

 no variables

PC5
(approximation)
 no variables

mode 0

if (t.ide==CARDHOLDER) then {}=>yes

else {} =>~yes

PC1

Figure 4.10: University of Pennsylvania Purchase Card policies encoded as policy au-
tomata (1 of 2)

100

yes & (t.month!=month);

month:=t.month;

count:=1;

var count:=0:int

var month:=0:int

mode 0

if true then {} => yes

mode 1

if true then {}=> yes

yes;

count:=1;

month:=t.month;

PC11

mode 2

if (month==t.month)

then {}=>~yes

yes & (t.month==month) &

(count==799);

yes & (t.month!=month);

month:=t.month;

count:=1;

mode 0

if (t.price>1000) then {} =>~

yes

else {} => yes

no variables

PC10

var count:=0:int

var day:=0:int

mode 0

if true then {} => yes

mode 1

if true then {}=> yes

yes;

count:=1;

day:=t.day;

PC12

mode 2

if (day==t.day)

then {}=>~yes

yes & (t.day==day) &

(count==25);

yes & (t.day!=day);

day:=t.day;

count:=1;

yes & (t.day!=day);

day:=t.day;

count:=1;

var month:=0:int

var total:=0:int

mode 0

if true then {} => yes

mode 1

if (t.month==month) &

 (total+t.price>5000)

then ~sfo =>~yes

else {}=>yes

~yes & t.month!=month;

yes & (t.month==month);

total:=total+t.price;

yes;

month:=t.month

PC9

~yes & t.month!=month;

month:=t.month;

total:=0;

yes & (t.month==month) &

(count!=799)

count:=count+1;

yes & (t.day==day) &

(count!=25);

count:=count+1;

Figure 4.11: University of Pennsylvania Purchase Card policies encoded as policy au-
tomata (2 of 2)

101

var month:=0:int

var total:=0:int

mode 0

if true then {} => yes;{}->sfo

mode 1

if (t.month==month) &

 (total+t.price>10000)

then ~sfo=>~yes

else {}=>yes; {}->sfo

~yes & t.month!=month;

yes & (t.month==month);

total:=total+t.price;

yes;

month:=t.month

PC9'

~yes & t.month!=month;

month:=t.month;

total:=0;

Figure 4.12: Modified PC9 automaton that overrides the initial PC9 automaton and allows
a $10,000 per month spending limit.

payment infrastructure. We do not illustrate any of the FuelCard policies as they are very

similar to various Procard policies.

None of the policy automata discussed above use the ability of policy automata to

override the votes of other automata. Most of the Penn Procard policies are written so that

they cannot be overridden and they do not conflict with each other. The one exception is

policy PC9, which states that the $5000 monthly spending limit could be raised if appro-

priate permission is given. The automaton for PC9 has been encoded with this overriding

in mind: it makes its vote to reject purchases over its limit conditional on the absence of a

literal sfo. Thus, PC9 will be overridden if we install an automaton suchas PC9’ shown

in Figure 4.12. When this policy approves a purchase its voteasserts the literalsfo (indi-

cating it was approved by a senior financial officer) and therefore blocks the vote of PC9.

The card will therefore allow a cardholder to spend up to $10,000 a month.

4.4.3 Comparison and Discussion of Voting Mechanisms

In this section we evaluate the necessity and effectivenessof the defeasible logic voting

mechanism by comparing it to the other voting mechanisms described in Section 3.3.4.

The comparison is chiefly made by replacing the votes of the example from Section 4.2

with votes from each of the mechanisms, or by showing why sucha replacement is im-

possible.

102

We are concerned in particular with the four policiesP3, Pcc, PE , andPN . Recall that

P3 blocks future purchases after three purchases have taken place (for the discussion in

this section we assume that all purchases are taking place within a single day soP3 never

resets its counter to allow further purchases).Pcc blocks purchases once 500 dollars have

been spent. It is important to note that bothP3 andPcc tentatively approve purchases

which do not violate their respective polices. For example acard with onlyP3 installed

will approve the first three purchases and then deny further purchases. A card with both

policies installed will allow any sequence of three purchases with a total cost bounded by

$500.

The policyPE is an emergency policy that overridesP3 andPcc if an emergency is

taking place. Thus, a card withPE installed will approve any emergency purchase, even

if the purchase violates the policiesP3 or Pcc.

Finally,PN prevents purchases of alcohol (even if the purchase is one ofthe first three

purchases or if does not exceed the $500 total purchase limit). However, in the case of

an emergency purchase, policyPN defers toPE; emergency purchases of alcohol are

permitted.

In the following discussion we attempt to use alternate voting mechanisms to repro-

duce the behavior described in the preceding paragraphs.

Binary Voting Mechanism

Recall that the binary voting mechanism(D2, f2) has two possible votes,true andfalse,

and votes are resolved by taking the conjunction of all the votes.

The binary voting mechanism cannot replace the defeasible logic voting mechanism

in our example. Consider a card withP3 andPE installed, and two transaction request

sequencesa; a; a; a anda; a; a; e wherea is an non-emergency purchase ande is an emer-

gency purchase. Both sequences will potentially triggerP3, which limits transactions to

three per day. On the finala in a; a; a; a, P3 must votefalse in order to reject the fourth

purchase. However,P3 will submit the same vote for thee transaction ina; a; a; e, which

103

will force the rejection of the transaction even though we would like PE to overrideP3;

the binary voting mechanism gives us no way to override a policy.

3-Valued Logic Voting Mechanism

Recall that the 3-valued logic voting mechanism(D3, f3) allows three possible votes:true,

false and⊥ (a sort of ‘do not care’ vote), and atrue vote conflicts with afalse vote.

Like the binary voting mechanism, the 3-valued logic votingmechanism fails to model

our example. Again, consider a card withP3 andPE installed, and two input sequences

a; a; a; a anda; a; a; e. If the fourtha in the first sequence violates theP3 policy thenP3

must supply afalse vote to force a rejection ofa. However, fromP3’s perspective the same

holds for the evente in the second, so the automaton will supply afalse vote. This makes

it impossible for thePE automaton to force the acceptance of thee transaction—voting

true will cause a conflict, and voting⊥ will let the transaction be rejected.

Election Voting Mechanism

Recall that the election voting mechanism(De, fe) allows three possible votes:true, false

and⊥, and the transaction request is approved, or disapproved, depending whether there

were moretrue, or false, votes respectively.

We cannot simply replace the defeasible logic votes of the example with election votes.

Consider an emergency alcohol purchase that is made made after three purchases and

breaches the $500 spending limit. PoliciesP3, Pcc andPN all disapprove of the purchase

and their threefalse votes will counter the onetrue vote submitted byPE. The emergency

transaction will then be rejected, contrary to the desired outcome.

However, we can approximate the defeasible logic mechanism’s capacity for overrid-

ing policies by submitting multiple votes. This can be done by installing k copies of

a policy automaton. Since each of these automata will behaveexactly the same as the

other copies, this is equivalent to allowing a single automaton submit multiple votes—

effectively assigning a numbered priority to each automaton. Using this technique, we

104

can approximate our four policy example by using the following votes:

Policy Approval Vote Rejection Vote

P3 true × 1 false × 1

Pcc ⊥ ×2 false × 2

PN ⊥ ×4 false × 4

PE true × 8 ⊥ ×8

In the table above, ‘approval vote’ is the vote an automaton submits when a transaction

request satisfies the policy (for example, forP3 the purchase is the first, second or third

purchase) while the ‘rejection vote’ is the vote an automaton submits when a transaction

request violates a policy. SincePN only rejects bad purchases it supplies a ’do not care’

vote of⊥ when a purchase is not an alcohol purchase—it does not actively approve non-

alcohol purchases, leaving that to the other policies on thecard. Similarly,PE votes

⊥ when a purchase is not an emergency, leaving the decision to approve or disapprove

entirely up to the other policies on the card.

The votes listed above ensure thatPN overrides approvals fromP3 andPcc. It also

ensures that non-emergency transactions will only be approved if P3, Pcc andPN approve.

The emergency policy, with its eight votes, can override therejection votes from the three

other policies listed.

However, in this scheme a policy model with a singlePcc will never approve a trans-

action request, while a similar policy model using a defeasible logic voting mechanism

would approve and reject transactions as desired. This is infact unavoidable—any choice

of votes for policiesP3 andPcc will yield either a policy that votes⊥ when it should ap-

prove a transaction, or the votes will not yield a rejection in the case where only one ofP3

andPcc approve a non-emergency purchase. While this voting mechanism yields some of

the flexibility of the defeasible logic system, it is unsatisfactory because of this problem,

as well as the difficulty involved in choosing the votes. The choice of votes forP3 andPcc

involved a fairly tedious case analysis of the possible votes, and the two policies could not

be designed as isolated modules. The subsequent assigning of magnitudes to thePN and

PE automata depended strongly on the votes chosen for the othertwo policies. If we added

105

more low-priority policies we would have to replacePN andPE with higher magnitude

policies (or add more copies of those policies).

Finally, it is difficult to imagine using this voting mechanism to encode the signaling

capability thatPE andPN use. The policyPE asserts that the literale is true when there is

an emergency, and other automata can use that literal in their vote as to trigger conclusions

that would not normally be triggered, or suppress conclusions. In this casePN uses thee

literal to suppress its vote to reject. This kind of simple signaling could not be conveyed

using copies oftrue or false votes.

Prioritized Logic Voting Mechanism

Recall that the prioritized logic voting mechanism(Dp, fp) is essentially the 3-valued

logic mechanism extended by attaching priorities to thetrue andfalse votes. (This differs

from the strategy of duplicating automata employed for the election voting mechanism

because priorities are assigned to individual votes instead of policy automata.) The same

automaton may submit a vote with priority 3 in one case and submit a vote with priority 7

in another case.

The prioritized logic voting mechanism is the most flexible of the alternative mecha-

nisms considered as it is not difficult to find votes that yieldthe desired behavior:

Policy Approval Vote Rejection Vote

P3 true, 1 false, 2

Pcc true, 1 false, 2

PN ⊥ false, 2

PE true, 3 ⊥

Unlike the case with the election voting mechanism, this voting mechanism gives the

proper behavior when only thePcc policy is installed–purchases are approved until the

total cost exceeds $500. The votes listed in the table above reproduce exactly the behavior

we expect from the four policies used in our running example,even when only one or

two policies are installed. The election voting mechanism also required careful analysis

106

to assign the priorities to the votes while this mechanism did not require much analysis.

For the purposes of encoding the four policiesP3, Pcc, PN , andPE the prioritized logic

mechanism is as expressive as our defeasible logic mechanism. It could be argued that

for these policies it is better than the defeasible logic voting mechanism, since it is easier

to understand which vote will override other votes when priority is decided by a simple

number instead of the complex defeasible logic inference algorithm.

We see two disadvantages of the prioritized logic mechanism. One is that, while priori-

tized logic can encode the four policiesP3, Pcc, PN , andPE, it cannot encode the signaling

behavior that defeasible logic allows. Consider the following policies:

• PD: A policy that determines if the purchase involves prescription drugs and, if it

does, blocks drug purchases except in emergencies. However, if the cardholder is

allergic to a drug, purchases of that drug will always be rejected.

• Pe: A policy that determines if the purchase involves an emergency and, if it does,

permits all purchases.

• Pap: A policy which is installed if the cardholder is allergic topenicillin.

We assume that each policy is developed using special knowledge (perhaps proprietary)

that enables them to learn certain information about purchases. PD can determine if a

transaction request involves a certain drug (perhaps by consulting a licensed list of drug

product codes), but it is not capable of determining if a transaction request is an emergency.

Similarly,Pe is capable of determining if a transaction request is an emergency, but cannot

determine if a purchase contains prescription drugs.Pap is not capable of discovering any

information about the transaction request—it is only thereto indicate some information

about the cardholder.

We are concerned with the behavior of the card when presentedwith a penicillin pur-

chase. If the cardholder is not allergic to penicillin (and thereforePap is not installed)

thenPD should approve the purchase only in an emergency–essentially, PD defers toPe

in emergencies. However, if the cardholder is allergic to penicillin, PD shouldoverridePe

107

instead of deferring, so that the penicillin purchase is blocked even in emergencies. The

key problem is that the priority ofPD depends on the presence ofPap on the card: with

Pap, PD must have a higher priority thanPe; withoutPap, PD must have a lower priority

thanPe. Furthermore,PD cannot determine before voting whetherPap is present or if the

transaction is an emergency, soPD must submit a vote that works for each possibility.

We can assign defeasible logic votes that yield the desired behavior as follows:

• PD: If the purchase is a penicillin purchase then vote “¬e ⇒ ¬yes; ap ⇒ ¬yes”

• Pe: If the purchase is an emergency purchase then vote “{} ⇒ yes; {} ⇒ e”

• Pap: Always vote “{} → ap”.

The votes use two atomic formulase andap as signals; they are intended to mean ‘emer-

gency transaction’ and ‘allergic to penicillin’ respectively. The vote ofPD will reject a

transaction if eithere is not true orap is true. The vote ofPe tentatively approves the

purchase, but it also asserts thate is true, a signal to other automata (likePD) that an

emergency transaction is taking place. Finally, the policyPap does not say anything about

approving or rejecting the purchase; it simply asserts thattheap signal is true.

We now examine the behavior of these policies when a cardholder attempts to buy

penicillin in an emergency. There are two cases to consider:a card withPap installed,

and a card that does not havePap installed. In the first case,Pap asserts thatap is true,

triggeringPD’s rule ap ⇒ ¬yes, which blocksPe’s vote to approve the purchase. The

purchase will be rejected as it should be, since the cardholder is allergic to penicillin. In

the second case, the cardholder is not allergic to penicillin, so thePap policy is not installed

on the card, and the vote “{} → ap” is not submitted. In this case, neither of the two rules

in PD’s vote will be enabled because neitherap nor¬e is true. SoPD’s vote will not block

the vote ofPe, which approves the transaction request. Therefore the penicillin purchase

will be permitted, as it should be.

It is impossible to assign votes that yield the same behaviorusing the prioritized logic

voting mechanism. The priorities ofPe’s andPD’s votes cannot vary depending whether

108

Pap is installed on the card. Therefore, when an emergency purchase of penicillin is made,

eitherPD or Pe will always override the other policy; ifPe’s vote to approve an emergency

purchase overridesPD’s vote to reject a penicillin purchase, then this will happen even if

Pap is installed, which is contrary to the desired behavior. In order to get the correct be-

havior we could add some way for policies to query the card to see what other policies are

installed, but this would unnecessarily complicate the formal model. We could instead ex-

tendPap, Pe or PD with extra functionality so that, for example,Pap is able to determine

if the purchase is a penicillin purchase and therefore vote to override all other policies.

However, this would force us to duplicate functionality in different policies, leading to a

less modular design, and possibly violating licensing or security requirements that limit

which policies can learn about transaction requests—perhaps the reason onlyPD can de-

termine whether a purchase is a penicillin purchase is because it relies on an expensive

proprietary algorithm which cannot be copied to multiple policy automata.

This penicillin example shows how our defeasible logic voting mechanism, in addition

to having great flexibility in resolving conflicting priorities, allows policy designers to use

sophisticated signaling and make votes conditional on suchsignals. The prioritized logic

voting mechanism cannot be used to encode the same behavior without extending our

formal model or making policies less modular by duplicatingfunctionality.

A second disadvantage of the prioritized logic voting mechanism is that, historically,

explicit priorities have been difficult to use in a distributed setting. Lupu and Sloman [42]

write that

meaningful priorities are notoriously difficult for users to assign and may re-

sult in arbitrary priorities which do not really relate to the importance of the

policies. Inconsistent priorities could easily arise in a distributed system with

several people responsible for specifying policies and assigning priorities.

Our defeasible logic mechanism attempts to minimize such problems by using a more

declarative notation, which implicitly assigns priorities to votes. We feel that a vote which

states “I tentatively approve” or “I definitely reject” is more natural and less arbitrary

109

than “I vote yes with priority 6”, whose meaning depends on what priorities all the other

policies have chosen. We believe that using defeasible logic rules, where the inference

algorithm resolves many potential conflicts dynamically, could potentially yield a simpler

and more modular system for policy design—though a fair comparison would require

long term use of the defeasible logic voting mechanism to seeif different policy designers

collaborating in a distributed fashion would avoid the problems described by Lupu and

Sloman.

Replacing the Voting Mechanism

In this section we have showed how the defeasible logic voting mechanism allows votes

which can express various levels of priority, and can exhibit signaling that lets votes react

to the presence or absence of other policies. None of the alternate voting mechanisms

considered can express the full range of behavior that the defeasible logic mechanism

can. However, if the full power of the defeasible logic voting mechanism is not needed,

it may be desirable to use one of the simpler mechanisms whichare probably easier to

understand; many people can understand numbered priorities while few are familiar with

defeasible logic. In some sense, the voting mechanism is a parameter in the formal frame-

work and implementation presented in this dissertation; ifwe replaced the defeasible logic

mechanism with another mechanism much of the discussion of the formal framework

would be largely unchanged—for example, the algorithms forchecking conflict-freedom

and redundancy would work for any mechanism. Similarly, thesyntax of Section 4.1

and the implementation presented in Chapter 5 could be easily modified to use a different

voting mechanism.

4.4.4 Functionality Outside the Scope of the Language

There are several capabilities that one might want to include in a programmable payment

card which are left out of the language for the sake of simplicity. Data processing is one

110

such capability. Polaris is not intended to model complex data processing functionality—

the language is focused on control flow instead of manipulating data. However, there are

cases where such functionality would be useful in a policy. One example is querying

data structures—many of the policy automata presented in this chapter query a list of

acceptable or forbidden suppliers or items. Another example of data processing that one

might want in a payment card is some sort of logging functionality, where an on-card

applet records consumer preferences and reports that data at some point in future. Finally,

as mentioned in Section 4.1, a security policy may use cryptographic operations to check

that a transaction request is permissible. The Polaris language is not intended to model

such functionality.

From an engineering standpoint, however, we recognize the need to allow such func-

tionality in policies that are encoded in the Polaris language. This motivated our inclusion

of the ability to call “imported” code, as described in Section 4.1. The behavior of this

code is not considered by the model in any detail—we assume that these method calls

terminate and do not modify the state variables used to represent the automaton state, but

any other behavior is not modeled.

4.5 Summary

In this chapter we presented a language which can be used to easily encode policy en-

forcers in a form that corresponds to the formal definition ofpolicy automata discussed in

Chapter 3. This language bridges the gap between a practicaltool for a policy designer

and our formal model.

We justified the language, and therefore the underlying formalism, by showing how it

can encode a range of desirable policies, including 10 out of12 policies that regulate the

use of Penn’s purchasing card, and 16 of 16 policies that regulate the use of the university’s

fuel cards. Additionally, we showed example encodings of many other policy classes, from

cash card policies to policies that protect against harmfuldrug interactions. We justified

111

our defeasible logic voting mechanism by showing how other mechanisms fail to concisely

represent a given suite of policies.

112

Chapter 5

Implementation

We have implemented a prototype of thePolaris system that performs policy automata

analysis and compilation. It includes a graphical interface for editing the automata, an

analysis engine that checks for policy conflicts, and a code-generator that creates Java Card

applets that implement the policy automata. The architecture of the prototype is shown in

Figure 5.1. The tool is implemented in Java and is partly built using the Hermes [3] code

base. The tool is almost 38,000 lines of code, not including the graphics library used for

editing the automata.

5.1 Architecture

The prototype has four modules:

Front end: A developer uses the graphical front-end to create, edit andsave policy

automata. The automata are described using a graphical language made up of boxes and

arrows which are annotated with small pieces of text; creating automata is much like using

a graphics application like xfig or Adobe Illustrator. The automata are stored as XML.

The front end must also interact with the analysis engine to illustrate the outcome of any

analysis procedures. Figure 4.1 shows a screen shot of the automata editor.

Analysis engine: The analysis engine takes a policy model from the front end and

113

Platform-specific

Front

end

Analysis

engine

Code

generator

Java Card

compiler

(Oberthur)

Payment

Card

automata,

properties

Java

applets

results &

counter-

examples

automata

Figure 5.1: Polaris architecture

checks that the automata satisfy various properties the designer chooses. Currently we

have implemented a conservative procedure for checking conflict-freedom.

Code generator:The code generator converts a policy model into Java that is suitable

for a Java Card. Each policy automaton is compiled into a separate applet that implements

that policy. This architecture of separate applets allows new policy applets to added to the

card dynamically.

Payment card: The payment card provides the run-time environment for the policy

automata that have been compiled into Java Card applets. Thepayment card takes part in

a transaction via a PC that has a smartcard reader. Before thetransaction takes place the

policy model implementation must approve the purchase request.

We use simple typing rules to check if expressions involvingpolicy automaton vari-

ables and the transaction requests are well typed. We check that types are used consis-

tently; for example, an integer is not compared to a symbol ora boolean variable is not set

to 3. We also perform checks on the graphical structure to ensure that the picture on the

screen can be translated into a policy automaton.

114

5.2 Analysis

In our implementation we have implemented a conservative version of the conflict check-

ing algorithm of Section 3.5. In the Polaris language all of apolicy automaton’s votes are

explicitly listed in the automaton’s vote statements. Our algorithm gathers the votes of

each automaton in a model and checks all combinations where one vote is picked from

each automaton. If no combination leads to a conflict then we can be sure that the policy

model is conflict-free. However, false positives are possible; if we find a combination that

does lead to a conflict it may the case that no reachable state leads to that combination of

votes. In most of the complex policy models we have examined the number of states is

much higher than the number of combinations of votes, so thisalgorithm can be a cheap

way to check for conflicts.

5.3 Code Generation and the Java Card Platform

The Java Card platform allows multiple applets to be installed on a single Java Card. Ap-

plets can communicate with each other using procedure callsand shared objects. Applets

are protected from each other with a firewall mechanism, whereby inter-applet procedure

calls are mediated by the Java Card system and shared objectsmust be explicitly labeled as

shareable. This architecture yields a natural correspondence with our policy models: each

policy automaton can be compiled into an applet so that policy automata can be added or

removed dynamically.

There are two types of Java Card applets that need be generated: themanagerapplet

and thepolicy applet. Figure 5.2 gives an overview of the code generation process. The

manager applet is responsible for polling the policy applets for their votes, consolidating

the votes to decide whether the transaction request should be approved, and then notify-

ing the policy applets about the approval or disapproval. There is one manager applet on

a programmable payment card and it must be installed before any of the policy applets.

Most of the manager applet’s code deals with Java Card and transaction protocols; this

115

Policy Applet

Package

Policy Applet

Package

Policy Applet

Package
Manager Applet Package

Voting Library

Package

Code Generation

Manager

Applet

Template

Policy

Applet

Template

Policy

Automaton

Policy

Automaton

Policy

Automaton

Transaction

Request Type

Voting

Library

+

Manager

Applet

Policy

Applet

.Java

Policy

Applet

.Java

Policy

Applet

.Java
.Java
.Java

Policy Model

+

Defeasible

Logic

Engine

.Java

Defeasible

Logic

Engine

.Java

+

Voting

Library

Figure 5.2: Polaris code generation process

code is specified as a template that is constant for all manager applets. We envision dif-

ferent applications using different transaction request types (for example, in a prescription

drug payment system the transaction data may include information about which drug is

being bought, while a credit card purchase system may only include information about

the merchant, price and date) so we automatically generate the manager applet code that

processes the transaction request data, adjusting it to thespecific transaction request type.

Similarly, we adjust the voting library which is shared by the policy applets and manager

applet so that it can handle the appropriate transaction type.

The Java Card platform imposes certain constraints on the applet implementation.

Garbage collection is not available on most cards, so care must be taken to allocate the

minimal memory necessary. Many cards require that all the memory an applet will need

be allocated when the applet is installed. All data must be stored as 8 or 16 bit values.

Unlike the standard Java platform available on desktops andservers, a Java Card has two

116

kinds of memory: RAM and EEPROM. RAM is like the RAM in most computers—it

can be read from and written to quickly, and it loses its data when power is cut off (for

example, when a card is withdrawn from a card reading terminal). Due to cost and size

constraints, RAM is limited to 1 or 2K in the currently available cards. EEPROM will

retain data when power is lost, and it is cheaper than RAM so itis feasible to put as much

as 64K on a single card. However, EEPROM can only be written toa limited number of

times (typically on the order of 100,000) and writes are slow, so EEPROM should not be

used for memory which is updated frequently.

Our on-card defeasible logic engine (DLE) needed to accountfor these restrictions.

The DLE needs to compute all the literals that are defeasiblyprovable given a defeasible

logic theory. We partition the memory required for the algorithm into two parts: stable and

volatile. Stable data is kept in EEPROM and volatile data is kept in RAM. Our algorithm

keeps the rules of the theory in stable memory, while using volatile memory to track the

proof status of each of the literals in the theory. While the total memory required by the

DLE is proportional to the size of the theory, the volatile memory required is proportional

to the number of literals in the theory. To conserve EEPROM memory, we keep only a

single copy of the rules in the defeasible logic theory. Thiscopy is maintained by the

policy applet which is supplying the vote which contains therule.

A policy applet implements a single policy automaton. Many policy applets can be

installed on the same card. Starting from a template applet,the code generator adds two

methodsgetVote andupdate , which return a vote and update the state of the applet,

respectively. The set of all possible votes is computed by the code generator and each vote

is instantiated as a member variable stored in EEPROM. In thecode generation process

we convert votes into a binary format that can be stored and read efficiently.

Figures 5.3 and 5.4 show thePE emergency policy from Figure 4.5 after the code

generator has translated it into Java code. We have omitted some of the code that deals

with the Java Card platform as this is common to all applets and would make the figure

much larger.

117

public class PolicyApp0 extends Applet
implements ApprovalInterface {

private static byte pls_mode_var;
private static VoteImpl vote0, vote1;
private static byte[] t;
public Vote getVote(byte inByte0, byte inByte1) {

t[0] = inByte0; t[1] = inByte1;
switch (pls_mode_var) {
case 0:

if ((PlsImported.E(t[0]))) { return vote0; }
if (true) { return vote1; }
break;

case 1:
if ((PlsImported.E(t[0]))) { return vote0; }
if (true) { return vote1; }
break;

case 2:
if (true) { return vote1; }
break;

default:}
return NullVote.constructNullVote();

}
public static void install(byte[] bArray,

short bOffset, byte bLength) {
(new PolicyApp0()).register(bArray,

(short) (bOffset + 1), bArray[bOffset]);
vote0 = new VoteImpl((byte) 0,

Vote.STRICT, new byte[] {},
(byte) 101,Vote.STRICT,new byte[]{});

vote1 = new VoteImpl((byte) -27,
Vote.STRICT, new byte[]{});

}

Figure 5.3: Java code generated from the emergency policyPE (1 of 2).

118

public void update(byte inByte0,
byte inByte1, boolean yes) {

t[0] = inByte0; t[1] = inByte1;
switch (pls_mode_var) {
case 0:

if ((yes && (PlsImported.E(t[0])))) {
pls_mode_var = 1; }

break;
case 1:

if ((yes && (PlsImported.E(t[0])))) {
pls_mode_var = 2; }

break;
case 2: break;
default:

ISOException.throwIt(ERR_UNKNOWN_MODE);
}

}
public boolean select() {

AID Transaction_aid1
= JCSystem.lookupAID(TRANSACTIONAPP_AID,

(short) 0, (byte) TRANSACTIONAPP_AID.length);
if (Transaction_aid1 == null) {

// Cannot find the TransactionApp AID
ISOException.throwIt((short) 0x0010);

}
TransactionInterface sio1 = (TransactionInterface)

(JCSystem
.getAppletShareableInterfaceObject(

Transaction_aid1, (byte) 0x00));
if (sio1 == null) {

ISOException.throwIt((short) 0x0020); }
// Register the policy to TransactionApp
sio1.addPolicyApp();
return true;

}
}

Figure 5.4: Java code generated from the emergency policyPE (2 of 2).

119

The policy and manager applets use a shared library of classes that contains the data

structures and functionality needed to encode votes and allow the manager applet to query

the policy applets’ votes. More examples of the output of this code generation are available

at thePolarisweb site (www.cis.upen.edu/˜mmcdouga/polaris).

5.4 Adding Policies Dynamically

The policy model gives developers a formal framework for combining the policies of

different stakeholders. Different departments in an enterprise can each create their own

modular policies and when these policies are installed on a card they can be checked

against each other to ensure that they are, for example, conflict-free. This increases the

assurance that a payment card will behave properly when given to a user. However, the

Java Card/GlobalPlatform architecture allows new appletsto be installedafter the card

has been issued. In this section we discuss how our frameworkcan be adapted for the case

where arbitrary parties, who may not be affiliated with the enterprise that issued the card,

wish to add new policies. We call the set of policies that are initially installed thebase

policies. The policies added later are called thesupplemental policies.

In order to allow new policy automata to be checked with respect to previously-

installed policies we require that an installed policy provide a way to access its policy

automaton. This can be stored on the card or referenced by a URL. A developer will com-

pose these policy automata with her new policy automata and check that the new combined

policy model is conflict-free (or whatever property is desired). If the desired properties

hold, the developer follows the steps described in [22], which exploit the GlobalPlatform

security model. She generates valid JCVM byte code and supplies it to a certification au-

thority, who uses it to generate a CAP file with a digital signature. The CAP file, together

with signed load and install instructions, are then supplied to the developer who uses them

to load and install the new applet onto the card. The digital signatures protect the card

from the installation of invalid CAP files. When the new applet is selected (a basic Java

120

Card operation that chooses a particular applet for execution), it registers itself with the

manager applet installed by the primary issuer. If the applet is subsequently removed, the

manager applet disables the card.

In order to protect the functionality of the base policies from policies that were not

analyzed we modify the resolution function slightly. If theupdated set of applets generates

a ⊤ then we fall back to the base automata and evaluatef using only the votes from

the base policies. Since the base policies were installed before the card was issued we

can be confident that they are conflict-free. Once the transaction request is approved or

rejected,all policy automata (base and supplemental) update their stateand continue as if

the conflict had not occurred.

This illustrates the trade-off involved in adding policiesdynamically versus installing

them as a group; if policies are installed as a group it is easier to verify that they work

correctly and do not run into conflict states. If policies areadded one-by-one the user

must re-check every policy addition to see if it introduces new conflicts.

Policies outside the card

Keeping policies on the card makes it easy for the user to manage their purchasing restric-

tions. However, there may be situations where the policies need to be kept somewhere else

where they can be consulted for every purchase—for example,at the bank’s transaction

processing server, or at a special server operated by the enterprise or family that owns the

card.

Such an architecture would still benefit from a standard formal policy framework. A

bank may want to examine policies that are sent by users to ensure they do not damage

the transaction approval functionality; this task would beless costly if the analysis could

be done automatically using a Polaris-like tool.

121

memory required on card (bytes)
original SET 11291
modified SET 15586
increase due to modification 25%

Table 5.1: Code size for original and modified SET manager applet

5.5 Experimental Results

5.5.1 Applet Size

A smartcard’s limited memory makes code size an important consideration. To measure

the impact of our policy integration scheme we augmented Lyubich’s Java Card imple-

mentation of the of the SET protocol and measured the code size before and after the

augmentation. Table 5.1 shows how much the applet size increased for the Java Card

implementation of the SET protocol when we extended it to useour policy integration

architecture. The second column of the table shows how much EEPROM memory the

applet occupied on a Oberthur GalactIC Java Card1. After extending the SET applet with

a defeasible logic engine and the code necessary to manage policy applets the total applet

size is only 25% larger.

A policy applet takes up additional space on a Java Card when it is installed. A feasible

programmable purchase card architecture must have appletswhich are small enough to put

a number of policies on a smartcard. Table 5.2 shows the size of the five applets generated

from the automata in Figure 4.5. Once we have loaded the Java Card system software, the

voting library and the manager applet, the Oberthur GalactIC card has room for about 33

policies with a mean size of 678.4 bytes.

122

Policy memory required on card (bytes)
P3 704
PE 704
Pcc 672
PN 608
Pt 704
mean 678.4

Table 5.2: Code size for selected policy applets

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1
 2
 3
 4
 5
 6
 7
 8
 9

Number of policies

R
es

po
ns

e
tim

e
in

 m
ill

is
ec

on
ds

Figure 5.5: Polaris purchase card response time

123

5.5.2 Purchase Card Response Time

To measure the on-card performance of the Polaris purchase card system we tested the

response time of the system while varying the number of active policy applets on a card.

Figure 5.5 shows the time between sending transaction request data to the card and receiv-

ing a response2. The figure shows that the response time is roughly proportional to the

number of active policies. We feel that a response time of under 10 seconds is acceptable

for purchase card transactions, meaning that our prototypecould support nine simultane-

ous policies with an acceptable runtime—consumers are usedto waiting for a credit card

authorization. However, something that a consumer would not notice—a delay of one or

two seconds at most—would be better in that it would allow quicker checkout times and

reduce the likelihood of annoying the consumer.

We think the response time of our system could be reduced withmore effort. The

defeasible logic engine is has been optimized to use EEPROM instead of RAM. We think

a moderate use of RAM could speed up the processing while still keeping within the

small RAM space available on the card. Our inference algorithm has not been optimized

for the resolution function; it will check the provability of literals that do not impact the

provability of the specialyes literal. A more specialized inference algorithm could yield

better response times.

Faster response times would allow Polaris to be used in applications like public transit

systems where a transaction is no longer than the time neededto swipe a card through a

card reader. A project that investigated the use of smartcards for access to the Japanese

rail system set 100 milliseconds as the required maximum response time [67]. Other

applications would also require faster response times. Forexample, the EZ Pass system

1All the on-card experimental results were performed using an Oberthur GalactIC Java Card. The
class files were produced using Sun JDK1.4.205 javac compiler. The CAP files were generated using
the Oberthur Comsopolic converter. Other converters may yield CAP files of other sizes.

2The time was measured using the IBM JCOP Java Card command shell. The policy applets were acti-
vated in a random order. The nine policies were the five from Figure 4.5, PC6 and PC12 from Figures 4.10
and 4.10, and two additional policies similar to the others.

124

equips vehicles with smart cards that communicate with roadside antennas to gather toll-

payment and traffic information. If a car is traveling at 6.7 meters per second (about 15

miles per hour) then a 6 meter toll booth equipped with a shortrange wireless detector

would need a response within a second. If a Polaris system wasused to guard access to an

EZ Pass account then the response time would have to be under 1000 milliseconds.

5.5.3 Code Generation

We measured the execution time of the Polaris code generatoron a variety of policy mod-

els. We chose three policy models of realistic policies:r3 has three policies enforcing a

transaction limit, approved merchants and a five-purchase limit; r5 is the example from

Figure 4.5; andr10 is r5 combined with r3 and policies PC6 and PC12 from the Penn

Purchase Card policies. To stress our tools we also created artificial policy models:gn

consists ofn policies, each containingn modes each with its own randomly generated

vote. The randomly generated votes consists of one defeasible logic rule with 0-4 an-

tecedents. We randomly choose between strict, defeasible and defeater rules. Literals are

selected randomly from a set of 27 literals, one of which is the special literalyes. All

random distributions are uniform. We wrote the generated Java files to buffers in memory

to minimize the cost of interacting with the file system3.

Figures 5.6 and 5.7 show the time needed to convert the policymodel to Java. Our

tool ran out of memory when we tried to load the g90 model so we could not test the code

generator on anything larger than the g80. For realistic policies the code generation time

(which includes type checking) is very acceptable at under one second. Even for very large

policy models like g70 and g80, which by file size is more than 100 times the size of the r5

model, the code generation time is under 15 seconds. In Figures 5.8 and 5.9 we compare

the execution time to the size of the model, as measured by thesize of the XML files used

to store the model. For example, the r5 model from Figure 4.5 is 14 kilobytes, while the

3All the off-card execution time experiments were carried out on a 542MHz (as reported by Windows
XP) Pentium III running Windows XP Professional, with 256MBRAM. We used the Sun Java HotSpot
Client VM v1.5.0-b64).

125

0

50

100

150

200

250

300

r3
 r5
 r10
 g2
 g5
 g10

Policy Model

E
xe

cu
tio

n
T

im
e

(m
s)

Figure 5.6: Code generation performance on small models

0

2000

4000

6000

8000

10000

12000

14000

g10
 g20
 g30
 g40
 g50
 g60
 g70
 g80

Policy Model

E
xe

cu
tio

n
T

im
e

(m
s)

Figure 5.7: Code generation performance on large models

126

0

20

40

60

80

100

120

140

160

180

200

0
 10
 20
 30

Model Size (kb)

E
xe

cu
tio

n
T

im
e

(m
s)

Real Policies

Artificial Policies

Figure 5.8: Code generation performance as a function of model size on small models

0

2000

4000

6000

8000

10000

12000

14000

0
 2000
 4000
 6000
 8000

Model Size (kb)

E
xe

cu
tio

n
T

im
e

(m
s)

Real Policies

Artificial Policies

Figure 5.9: Code generation performance as a function modelof size on all models

127

Policy Model num. of policies num. of vote combinations time (ms)
r3 3 2 5
r5 5 16 43
r10 10 16 571
g2 2 4 5
g3 3 27 75
g4 4 256 1640
g5 5 3125 31130

Table 5.3: Conflict checking execution time for various policy models.

g80 model is 6500 kilobytes. The code generation time is essentially proportional to the

size of the model for both the realistic and artificial models, as shown in Figures 5.8 and

5.9.

5.5.4 Conflict Detection

We performed similar experiments to measure the conservative conflict detection algo-

rithm discussed in Section 5.2. This algorithm examines allpossible combination of votes

to check for conflicting combinations. It is conservative since it does not use reachability

information to ignore combinations of votes which will never occur in a running policy

model.

We restricted our measurements to smaller models as the algorithm is less scalable

than the code generation algorithm. Again we measured our three realistic policy models

and we measured artificial policy models g2, g3, g4 and g5. Table 5.3 shows the results of

our experiments. The columns list the number of policy automata in each model, the num-

ber of distinct vote combinations that are possible in each model, and the time required to

perform the conflict analysis. While we were able to analyze all our realistic models in

under a second, our artificial examples are more demanding—g5 required more than 31

seconds of execution time. This difference in performance is due to the different charac-

teristics of the real and artificial models. In our real policies many automata submit votes

128

that are identical to other automata—our algorithm can ignore any duplicate votes since

they will not affect the result of resolution function. In contrast, the artificial models usu-

ally all submit unique votes, and each automaton has many possible votes it could submit.

This is reflected in the fourth column, which shows the numberof vote combinations in

the artificial models growing at a cubic rate with respect to the number of policies, while

the realistic policy models do not have more than 16 distinctvote combinations.

5.6 Summary

In this chapter we presented the Polaris suite of tools—a prototype model-based design

framework. Polaris includes tools to edit and analyze policy automata. Once a designer is

satisfied with a policy design, Polaris will generate Java source code that can be compiled

and run on a Java Card in a form that maintains the modular structure of the policy model;

policy applets derived from automata can be added to a card dynamically in order to

customize a purchase card.

Our experimental results demonstrate the feasibility of our framework. Applets de-

rived from our policy automata occupy on average under 700 bytes of space on a card,

allowing us to store more than 30 on a typical multi-application card. A Polaris-equipped

Java Card is capable of enforcing up to 9 policies while maintaining response times under

10 seconds. Our code generation algorithm is capable of processing policy sets that are

much larger than the size of the the Penn Procard policy set, and code generation for real-

istic examples was well under a second and thus presents no obstacle for a policy designer.

Our conservative conflict detection algorithm was also ableto handle realistic policy sets

and terminate within one second, making it easy for a policy developer to check her policy

before compilation.

129

Chapter 6

Security

In this chapter we discuss some security issues related to our model and implementation

of a programmable purchase card. These issues include our assumptions about the envi-

ronment and adversaries, which attacks we aim to prevent, which attacks the platform or

payment infrastructure is responsible for preventing, andwhich attacks we cannot prevent.

6.1 Trust Relationships

One unusual aspect of our application that we only partiallytrust the cardholder. While we

certainly would like to write policies that reduce the cost of a purchase card being stolen

and used by an unauthorized (and therefore completely untrusted) individual, many of the

policies in our examples deal with cardholders who should have partial but not complete

access to the resources protected by the card. In our case, the policy developers and card

issuers are trusted to determine what transactions are and are not permissible, while the

user is expected to occasionally violate these policies—hence the need for enforcement by

the card itself. The policy enforcer on the card acts on behalf of the secondary issuer, not

the cardholder. However, we do not view the cardholder strictly as an adversary—there

is some obligation to provide as much service to a valid cardholder as possible within the

constraints of policies (this obligation corresponds to the principles of transparency and

130

minimality in Section 3.1.3).

We must make certain assumptions to consider our programmable purchase card se-

cure. Chief among these is we must trust the party—typicallyit is the merchant—who is

supplying the transaction data to give accurate information; if the cardholder can conspire

with a merchant so that an alcohol purchase is portrayed as a more benign item then there

is little a purchase card can do to prevent abuse of the card. We justify this assumption par-

tially by assuming that our payment card uses the existing financial infrastructure, where

payment card issuers like banks and credit cards, in concertwith law enforcement, make

some effort to punish merchants who commit fraud.

This dependence on the merchant is exacerbated by the limited capabilities of smart-

cards. Most smartcards do not have an internal clock so any information about a trans-

action’s time and date must come from the merchant. The merchant may conspire with

the cardholder to manipulate the time reported to the card, perhaps avoiding time-based

restrictions like the Penn Procard’s policy that limits a card to 25 transactions per day.

Time is just one example of dynamic information that we wouldlike to use to make

policy decisions. Another is facts about who has been dropped from a list of approved sup-

pliers. Similarly, a smartcard might wish to disable itselfwhen an employee is terminated—

a capability that would allow it to enforce the Procard policy PC2 in Section 4.4.2. As with

time information, this data could be gathered by the merchant at the time of purchase and

passed to the card, but this increases our dependence on the merchant (who, after all, has

little incentive to inform the card that he is no longer approved). Gathering relevant in-

formation may also put a high burden on the merchant, who mustsomehow contact the

appropriate databases for a particular set of policies.

We can use a secure signature scheme to reduce our dependenceon the merchant.

Many smartcards are capable of performing cryptographic operations, so it is feasible to

demand information supplied by the merchant be signed by a trusted third party. Lyu-

bich [46] gives a protocol for getting trusted time information using such a mechanism.

131

However, we still must depend on the merchant to gather such information, as the smart-

card has no network connectivity other than what is suppliedby the machine that it is com-

municating with. As mentioned above, gathering this signeddata may be burdensome—a

merchant may have a standard time server to get signed data about the current time, but it

would be much more complex to fetch signed information from each university or com-

pany that does business with the merchant.

The limitations described above can be mitigated to a degreeby assuming that our

purchase card is one element of a layered policy enforcementsystem. In other words,

we offer an addition to the existing payment infrastructure, not a replacement for it. For

example, a purchase card transaction will still be subject to checks by banks and credit

card companies to see if a given card has been revoked.

6.2 Attacks Using the Smartcard Platform

In addition to assuming accurate information, we must also assume the Java Card platform

will behave as designed. In particular, we need to assume that an applet installed on

the card will not have access to the private data in our manager applet or policy applets.

The Java Card uses a firewall mechanism [65, 66] to enforce this, but if this system is

compromised then an attacker could modify the manager applet or policy applet to allow

previously forbidden transactions, or deny all transactions—for example, an attacker could

modify theP3 policy from Figure 4.5 so that it always remains in the state where it thinks

three transactions have occurred and therefore no more should be permitted.

Our ability to dynamically add policy applets opens anotheravenue of attack. A card-

holder (who has ample access to the card) or a merchant (who may have access to the

card at the point of sale) may attempt to install a malicious policy. Such a policy could

unduly restrict transactions (for example, a merchant may want to prevent purchases at

a competitor) or override existing restrictions (for example, a child may wish to override

a spending limit policy installed by a parent). To prevent such attacks we rely on the

132

GlobalPlatform [20] procedures for installing and removing applets. Since policy applets

are just like other Java Card applets, the security measuresdesigned to protect cards from

malicious installation or deletion of applets extend to policy applets. The GlobalPlatform

allows a card issuer to require cryptographic signatures for any installation or deletion of

applets. An applet can therefore only be installed by a partywho knows the relevant secret

keys. These cryptographic restrictions partially mirror the trust relationship described in

the previous section—the key holders are the trusted card issuer and secondary issuers,

while the cardholder lacks the necessary secret information. A secondary issuer like a

parent or enterprise can keep the keys secret from the cardholder and therefore prevent

installation of malicious applets or deletion of previously installed policy applets.

Our implementation takes further steps to prevent abuse—ifa policy applet is some-

how deleted the manager applet refuses to process any further transactions, effectively

disabling the card. We could implement additional safeguards whereby a policy applet

shares a secret with the manager applet and therefore cannotbe replaced with another

applet with the same name.

A more humdrum attack to our payment card involves removing power from the card

mid-transaction—sometimes this loss of power is called a ‘tear’. Since a smartcard is

typically powered by the card reader, this attack is as simple as removing the card from

the reader. In our current implementation the policy applets update their state to record an

approval or rejection before the manager applet notifies thecard reader that the transaction

is approved. Therefore there is a brief amount of time where some of the policy applets

have recorded the purchase but the purchase has not taken place. Removing the card at

this point will leave the policy applets in an inaccurate state. The Java Card platform

provides some support for simple atomic memory updates—forexample, we can ensure

that either all policy applets are updated or none are. This eliminates an attack where

someone removes power in mid-update, leaving some policy applets updated while others

are not. However, it does not eliminate a tear attack entirely—a careful adversary could cut

power at just the time when we have committed all updates but the transaction approval (or

133

disapproval) has not been conveyed to the merchant. Unfortunately the Java Card atomic

update system will not allow atomic updates that span multiple calls to the card, so we

cannot delay committing the updates until we receive some sort of confirmation from the

merchant. Even if such updates were possible, an attacker could remove power from the

card before the confirmation is conveyed, leaving the card ina state where the transaction

has occurred but the policy applets have not recorded it. (Hubbers and Poll [31] give a

technique for reasoning about tears in Java Card programs.)

6.3 Summary

The security of our system depends on various assumptions about the parties taking part

in transactions and the technology used to implement our payment card. In particular, we

trust the merchant to supply accurate transaction information, or to supply such informa-

tion from a trusted party. We also trust the Java Card hardware and system to faithfully

implement the protections described in the Java Card and GlobalPlatform specifications.

We leverage the security assurances of the the Java Card platform and the established

payment infrastructure to ensure that our system behaves securely.

134

Chapter 7

Conclusion

We have presented a thorough examination of a programmable payment card—a smart-

card capable of holding and enforcing multiple modular purchasing policies. The appli-

cation has been explored from a formal perspective by proposing a succinct formal model

for modular policies called policy automata. Building on this formal model, we defined

properties of policies and algorithms for checking these properties.

We also demonstrated how this formal model can be part of an effective model-based

design framework. The effectiveness of the model was demonstrated by showing how

it can encode the real world purchasing policies of the University of Pennsylvania. The

feasibility of our model was demonstrated by implementing an editor, an analysis tool,

and a code generator which can translate the formal description of policies into executable

Java Card applets. Our experiments show that the restrictedresources of a Java Card

do not prevent our policies from giving response times that are acceptable for real world

purchasing situations.

7.1 Open Issues and Future Work

There are a number of open issues that offer directions for future investigation.

135

One research direction related to the formal model of the application deals with reject-

observing policies like the ATM policy discussed in Section3.1.5. Recall that this policy

disables a card after three failed attempts to make purchases that violate a policy. Such

a policy is actually used for bank cards, so it would be nice touse our formal model to

analyze it. It is possible to encode the policy as a policy automaton. However, the formal

definition of ‘security policy’ discussed in Section 3.1.1 does not distinguish the ATM

policy from a policy that blocks bad purchases without ever disabling the card. It is not

clear if there is a modification of the security policy definition that retains the simplicity

of the current security policy framework.

We would like to further investigate different notions of refinement in the hopes of

finding a definition that is both succinct and appropriate forpolicy automata. Ideally, such

a definition would allow us to characterize the composition of policy automata formally

without referring to the operational semantics of the automata. With truncation automata

we know that the composition of two automata will enforce theconjunction of the corre-

sponding policies—we would like to make a similar statementfor policy automata.

Section 5.4 describes adding policy automata to cards dynamically. The implemen-

tation allows a user to install some policies, make some purchases, and then add more

policies. However, the formal semantics assumes that all policies are installed before any

purchases are made. We would like to extend the formal semantics and the algorithms for

checking automata properties to account for the possibility of adding new policy automata

in the middle of a transaction sequence.

In the current formal model any policy can submit any vote. However, it may be useful

to have restrictions on what votes a given policy may be able to submit. For example,

in our example in Section 4.2, thePE policy signaled that a transaction request is an

emergency transaction by submitting a vote “{} → e”, which modified the effect ofPN ’s

vote by asserting that the literale is true. However, any policy could submit the same vote,

effectively foolingPN into thinking thatPE had marked the transaction as an emergency.

If we added some restriction that allowed onlyPE to submit votes that implye thenPN

136

could be sure that ife was marked as true then it was a genuine emergency as decided by

PE.

Similarly we may want to restrict which policies can override other policies. For

example, the Penn Procard policy PC9 sets a $5000 per month limit on purchases, but this

limit can be raised with approval from a senior financial officer. We can override a policy

automaton implementing PC9 by installing a new policy that submits votes that override

the votes of the PC9 automaton—however, we may want to ensuresomehow that only

policies approved by the senior officer could submit such a vote.

Many formal trust management systems [38, 36, 40] have been proposed that deal with

delegation as a mechanism for authorization. The programmable payment card enables

delegation by giving enterprises or other parties a way to customize a payment card and

then delegate it to another party. However, this delegationis external to the formal model

of policies discussed in Chapter 3. We are interested in investigating the connection (if

any) between the kind of delegation whereby a secondary issuer gives a customized card

to a cardholder, and the existing formal systems for describing delegation in trust man-

agement. Perhaps this direction of research could be combined with some mechanism for

restricting which policy automata can submit certain votes, as described above.

This dissertation discusses using defeasible logic statements as votes. However, it is

likely that the people who write real world purchasing policies will not be familiar with

such a formal notation and cannot invest the time to master defeasible logic. Instead, it

would be desirable to have some a simpler language for writing votes, with a semantics

based on defeasible logic. Such a language could be based on simple English language

templates which are translated to defeasible logic; for example, a policy designer may

write “tentative yes if not an emergency”, which would then be translated to “¬e ⇒ yes”.

Halpern and Weissman use a similar approach for describing polices in Lithium [24].

As discussed in Chapter 6, policies may need access to data which cannot be kept

on a payment card. For example, a policy that blocks purchases while an employee is

suspended must somehow learn of the suspension. Chapter 6 sketched some possible

137

techniques for using such data; in the future we would like toflesh out these ideas, adapt

our formal model if necessary, and implement a system that securely uses off-card data

for policy decisions.

Our implementation can be improved in a number of ways. Further optimization of the

manager applet on the card, especially the defeasible logicengine, is necessary to achieve

transaction processing that is fast enough to handle dozensof policies, or to make access

control decisions in domains that require response times under a second—for example, if a

cardholder engages in a transaction by walking or driving past a wireless card reader. One

possible strategy for optimization is to use some sort of incremental compilation, where

defeasible logic votes are ‘compiled’ when a policy is installed so that when the votes

are resolved a simple table-lookup is used instead of running a defeasible logic inference

algorithm.

The analysis tool currently implements a conservative conflict checking algorithm. In

the future we would like to implement the full conflict checking algorithm which makes

use of reachability information. Additionally, we would like to implement algorithms for

checking redundancy (both normal and strong).

Finally, while we focused on the programmable payment card application in this work

we think the policy automata framework could be applied in other domains. Some pre-

liminary work has been carried out at the University of Pennsylvania Security Lab that

applies our techniques to regulating mobile phone use. A project at the University of Illi-

nois at Urbana-Champaign has applied some of our techniquesto managing policies for

web services. We are interested in continuing this direction, perhaps extending the formal

model or defining new properties if the new applications warrant.

138

Bibliography

[1] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.Distributed

Computing, 2(3):117–126, 1987.

[2] Rajeev Alur, Radu Grosu, and Michael McDougall. Efficient reachability analysis of

hierarchical reactive machines. InProceedings of the 12th International Conference

on Computer Aided Verification, pages 280–295, 2000.

[3] Rajeev Alur, Michael McDougall, and Zijiang Yang. Exploiting behavioral hierarchy

for efficient model checking. InProceedings of the 14th International Conference

on Computer Aided Verification, pages 338–342. Springer-Verlag, 2002.

[4] Grigoris Antoniou, David Billington, and Michael J. Maher. On the analysis of

regulations using defeasible rules. In32nd Annual Hawaii International Conference

on System Sciences (CD/ROM). Computer Society Press, 1999.

[5] Ken Arnold, James Gosling, and David Holmes.The Java Programming Language.

Addison-Wesley Longman Publishing Co., Inc., 2000.

[6] Yair Bartal, Alain J. Mayer, Kobbi Nissim, and Avishai Wool. Firmato: A novel

firewall management toolkit. InIEEE Symposium on Security and Privacy, pages

17–31, 1999.

[7] G. Berry and G. Gonthier. The synchronous programming languageESTEREL: de-

sign, semantics, implementation. Technical Report 842, INRIA, 1988.

139

[8] David Billington. Defeasible logic is stable.Journal of Logic and Computation,

3(4):379–400, 1993.

[9] Grady Booch, Jim Rumbaugh, and Ivar Jacobson.The Unified Modeling Language

User Guide. Addison-Wesley, 1998.

[10] C.-B. Breunesse, N. Cataño, M. Huisman, and B.P.F. Jacobs. Formal methods for

smart cards: an experience report. Technical Report NIII-R0316, University of Ni-

jmegen, Department of Computer Science, Sept 2003.

[11] Gerhard Brewka, Jürgen Dix, and Kurt Konolige.Nonmonotonic Reasoning: An

Overview. CSLI Lecture Notes 73. CSLI Publications, Stanford, CA, 1997.

[12] Lilian Burdy, Yoonsik Cheon, David Cok, Michael D. Ernst, Joe Kiniry, Gary T.

Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JMLtools and appli-

cations.Software Tools for Technology Transfer, 2005.

[13] Marco Cadoli and Marco Schaerf. A survey of complexity results for nonmonotonic

logics. Journal of Logic Programming, 17(2/3&4):127–160, 1993.

[14] M. Chechik, S. Easterbrook, and V. Petrovykh. Model-Checking over Multi-valued

Logics. In J. N. Oliveira and P. Zave, editors,FME 2001: Formal Methods for In-

creasing Software Productivity International Symposium of Formal Methods Europe,

pages 72–98. Springer Verlag, 2001.

[15] E.M. Clarke and R.P. Kurshan. Computer-aided verification. IEEE Spectrum,

33(6):61–67, 1996.

[16] E.M. Clarke and J.M. Wing. Formal methods: State of the art and future directions.

ACM Computing Surveys, 28(4):626–643, 1996.

140

[17] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The ponder

policy specification language. In Morris Sloman, editor,Proceedings of the Interna-

tional Workshop on Policies for Distributed Systems and Networks (POLICY), LNCS,

volume 1995, pages 18–38, 2001.

[18] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge,Greg Nelson, James B.

Saxe, and Raymie Stata. Extended static checking for java. In Proceedings of the

ACM SIGPLAN 2002 Conference on Programming language designand implemen-

tation, pages 234–245. ACM Press, 2002.

[19] Philip W. L. Fong. Access control by tracking shallow execution history. InIEEE

Symposium on Security and Privacy, pages 43–55, 2004.

[20] GlobalPlatform.GlobalPlatform Card Specification v2.1.1, March 2003.

[21] Benjamin N. Grosof, Yannis Labrou, and Hoi Y. Chan. A declarative approach to

business rules in contracts: courteous logic programs in xml. In Proceedings of the

1st ACM conference on Electronic commerce, pages 68–77. ACM Press, 1999.

[22] Carl A. Gunter. Open APIs for embedded security. In LucaCardelli, editor,Pro-

ceedings of the European Conference on Object Oriented Programming, July 2003.

[23] Joshua D. Guttman. Filtering postures: Local enforcement for global policies. Tech-

nical report, The MITRE Corporation, 1997.

[24] Joseph Y. Halpern and Vicky Weissman. Using first-orderlogic to reason about

policies. InProceedings of the 16th IEEE Computer Security FoundationsWorkshop,

pages 187–201, 2003.

[25] David Harel. Statecharts: A visual formalism for complex systems. Science of

Computer Programming, 8(3):231–274, June 1987.

141

[26] Jonathan D. Hay and Joanne M. Atlee. Composing featuresand resolving interac-

tions. InProceedings of the 8th ACM SIGSOFT international symposiumon Foun-

dations of software engineering, pages 110–119. ACM Press, 2000.

[27] Allan Heydon, Mark W. Maimone, J. D. Tygar, Jeannette M.Wing, and Amy Moor-

mann Zaremski. Miro: Visual specification of security.IEEE Trans. Softw. Eng.,

16(10):1185–1197, 1990.

[28] James A. Hoagland, Raju Pandey, and Karl N. Levitt. Security policy specification

using a graphical approach. Technical Report CSE-98-3, University of California,

Davis Department of Computer Science, 1998.

[29] Gerard J. Holzmann.Design and Validation of Computer Protocols. Prentice-Hall,

Englewood Cliffs, New Jersey, 1991.

[30] John E. Hopcroft and Jeffrey D. Ullman.Introduction to Automata Theory, Lan-

guages, and Computation. Addison-Wesley, Reading, Massachusetts, 1979.

[31] E.-M.G.M. Hubbers and E. Poll. Reasoning about card tears and transactions in Java

Card. In M. Wermelinger and T. Margaria-Steffen, editors,Fundamental Approaches

to Software Engineering, 7th International Conference, FASE 2004, volume 2984 of

LNCS, pages 114–128. Springer-Verlag, 2004.

[32] Nijmeegs Instituut Voor Informatica En Informatiekunde. Esc/java 2.http://

www.cs.ru.nl/sos/research/escjava/ .

[33] International Organization for Standardization.ISO 18245:2003 Retail financial ser-

vices – Merchant category codes, April 2003.

[34] Bart Jacobs, Hans Meijer, and Erik Poll. VerifiCard: A European project for smart

card verification.Newsletter 5 of the Dutch Association for Theoretical Computer

Science (NVTI), 2001.

[35] Java compiler compiler.http://javacc.dev.java.net/ .

142

[36] Trevor Jim. Sd3: A trust management system with certified evaluation. InSP ’01:

Proceedings of the IEEE Symposium on Security and Privacy, page 106. IEEE Com-

puter Society, 2001.

[37] Steven C. Johnson. Yacc: Yet another compiler compiler. In UNIX Programmer’s

Manual, volume 2, pages 353–387. Holt, Rinehart, and Winston, New York, NY,

USA, 1979.

[38] Butler Lampson and Ron Rivest. SDSI—a simple distributed security infrastructure.

http://theory.lcs.mit.edu/˜cis/sdsi.html .

[39] Xavier Leroy. Java bytecode verification: algorithms and formalizations.Journal of

Automated Reasoning, 30(3–4):235–269, 2003.

[40] Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation Logic: A logic-

based approach to distributed authorization.ACM Transaction on Information and

System Security (TISSEC), February 2003.

[41] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforcement mechanisms

for run-time security policies.International Journal of Information Security, 2004.

To appear.

[42] Emil C. Lupu and Morris Sloman. Conflicts in policy-based distributed systems

management.IEEE Trans. Softw. Eng., 25(6):852–869, 1999.

[43] M. Lyubich. Eine SET Kundembörse mit der Java Card Unterstützung. InGI Infor-

matiktage 2000. Konradin-Verlag, November 2000.

[44] M. Lyubich. Die architekturen von SET mit der Java Card.In A. Bode and W. Karl,

editors,ITG Fachbericht, APC 2001 Arbeitsplatzcomputer, 2001.

[45] M. Lyubich and C. Cap. Eine implementierung von SET fürJava. InTagesband

Netzinfrustruckhur und Anwendugen für Informationsgesellschaft, pages 208–214.

Dr. Wilke Verlag, 1998.

143

[46] Mykhailo Lyubich. Architectural Concepts for Java Card Running a Payment Pro-

tocol and Their Application in a SET Wallet. PhD thesis, University of Rostock,

2003.

[47] Michael J. Maher. Propositional defeasible logic has linear complexity.Theory and

Practice of Logic Programming, 1(6):691–711, 2001.

[48] Michael J. Maher, Andrew Rock, Grigoris Antoniou, David Billington, and Tristan

Miller. Efficient defeasible reasoning systems.International Journal on Artificial

Intelligence Tools, 10(4):483–501, 2001.

[49] Mastercard and Visa.SET Secure Electronic Transaction Specification: Business

Description, May 1997.

[50] Mastercard and Visa.SET Secure Electronic Transaction Specification: External

Interface Guide, May 1997.

[51] Mastercard and Visa.SET Secure Electronic Transaction Specification: Formal Pro-

tocol Definition, May 1997.

[52] Mastercard and Visa.SET Secure Electronic Transaction Specification: Program-

mer’s Guide, May 1997.

[53] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous

activity. Bull. Math. Biophysics, 5:115–133, 1943.

[54] Sun Microsystems. Java card platform.http://java.sun.com/products/

javacard/ .

[55] Donald Nute. Defeasible reasoning. InProc. 20th Hawaii International Conference

on Systems Science, pages 470–477. IEEE Press, 1987.

[56] Donald Nute. Defeasible logic. In D.M. Gabbay, C.J. Hogger, and J.A. Robinson,

editors,Handbook of Logic in Artificial Intelligence and Logic Programming, vol-

ume 3, pages 353–395. Oxford University Press, 1994.

144

[57] University of Pennsylvania. Transaction compliance audits. http://www.

purchasing.upenn.edu/about/pm_audit.php .

[58] D. Pool. A logical framework for default reasoning.Artificial Intelligence, 36(1):27–

47, 1988.

[59] R. Reiter. A logic for default reasoning.Artificial Intelligence, 12(1-2):81–132,

1980.

[60] Fred B. Schneider. Enforceable security policies.ACM Trans. Inf. Syst. Secur.,

3(1):30–50, 2000.

[61] Saheem Siddiqi and Joanne M. Atlee. A hybrid model for specifying features and

detecting interactions.Computer Networks: The International Journal of Computer

and Telecommunications Networking, 32(4):471–485, 2000.

[62] Medical Economics Staff.Physicians’ Desk Reference. Thomson Healthcare, 57

edition, 2003.

[63] Scott D. Stoller and Yanhong A. Liu. Security policy languages and enforcement. In

Proceedings of the Third Russian National Conference on Mathematics and Infor-

mation Technology Security (MaBIT-04), October 2004.

[64] Sun Microsystems.Java Card 2.2 Application Programming Interface, September

2002.

[65] Sun Microsystems.Java Card 2.2 Runtime Environment (JCRE) Specification, June

2002.

[66] Sun Microsystems.Java Card 2.2 Virtual Machine Specification, June 2002.

[67] Hideyuki Tokuda, September 2004. Keynote address at EMSOFT 2004, Pisa, Italy.

[68] Kansas State University. Bandera project.http://bandera.projects.cis.

ksu.edu .

145

[69] University of Pennsylvania.University of Pennsylvania Purchasing Card Cardholder

Guide, April 2003.

[70] Joachim van den Berg and Bart Jacobs. The loop compiler for java and jml. In

Proceedings of the 7th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, pages 299–312. Springer-Verlag, 2001.

[71] Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model check-

ing programs. InProceedings of the The Fifteenth IEEE International Conference on

Automated Software Engineering (ASE’00), page 3. IEEE Computer Society, 2000.

[72] Avishai Wool. Architecting the lumeta firewall analyzer. In 10th USENIX Security

Symposium, pages 85–97, Washington D.C., August 2001.

146

