MODELING AND ANALYZING INTEGRATED POLICIES
Michael McDougall

A DISSERTATION

Computer and Information Science

Presented to the Faculties of the University of Pennsyd/amPartial

Fulfillment of the Requirements for the Degree of Doctor ofl¢dophy

2005

Carl A. Gunter and Rajeev Alur
Supervisors of Dissertation

Benjamin C. Pierce
Graduate Group Chairperson

Acknowledgments

This dissertation would have been impossible without tHp &ed support of many.

This work was built on a foundation that was established eyQpEm group at Penn:
Watee Arjsamat, Alwyn Goodloe, and Jason Simas’ early warkhe programmable
payment card prototype gave me a big head start. My work woaNe been much tougher
if they had not already mapped out many of the dead-endsdbat ivhen working with
new technology. Alwyn Goodloe deserves special mention esllaborator on many
projects in addition to the payment card work—there were ynagctasions where my

work depended on the product of his sweat and tears.

The policy automata work was the product of many discussitismy my advisors,
Carl Gunter and Rajeev Alur. | would like to thank them forthkir help and advice on
this project as well as many other projects throughout me tanlPenn. They were always
ready to do what needed to be done for me. They guided me taroksprojects when |
started. They eased the bureaucratic hassles of being @agesstudent. They shared their
wisdom on conducting research, from finding the right redeatrategies to getting the
IATEX looking right. Finally, when the time was right, they knevihen to step back and
let me struggle on my own. Through all this they became myige | am flattered and

honoured by the trust they have given me.

This dissertation was greatly improved by the commentsstipres and suggestions
from my dissertation committee: Insup Lee, Andre Scedregndette Wing and Steve
Zdancewic. | thank the committee members for their att@raiod enthusiasm, especially

Dr. Wing for making the effort to travel to Philadelphia tdeatd my defense.

Penn has a great faculty and | came to feel like | was suppteallarge group of
tertiary advisors. Two standout examples of this group &mjd@nin Pierce and Insup Lee.
Benjamin Pierce inspired me through his teaching, researdlyood-natured enthusiasm.
He demonstrated how one can pursue rigourous theory andemoiology. Insup Lee’s
endless skepticism as a teacher and researcher forced ealjounderstand what | was
talking about a number of times—a lesson | have tried to ivatéeze—and his advice has
been helpful and reassuring.

| would also like to thank Michael Felker, my department'sa@uate Coordinator,
who, time and time again, cut a safe path through bureauguatgles.

In my early years at Penn | was surrounded and inspired byalke in the Theory
Lab: Trevor Jim, Davor Obradovic, Pankaj Kakkar and Kar@iilargavan. Those presen-
tations and brainstorming sessions prepared me for mynasdavould like to especially
thank Trevor Jim for his help, sometimes offered directld aometimes by standing as
an example of someone with a great eye for good research.

My life as a graduate student was eased by selfless finan@aljgal and moral sup-
port from my parents and my parents-in-law.

Most of all | need to thank my wife, Megan Susnis. Her suppod patience as four
years stretched into six and a half, and as her husband sepkdato a dissertation, was
enormously valuable to me. She endured disruption and leniggs of uncertainty so

that | could study what I love. | hope | can pay that debt backesday.

ABSTRACT
MODELING AND ANALYZING INTEGRATED POLICIES
Michael McDougall

Carl A. Gunter and Rajeev Alur

Smart card technology has advanced to the point where cemped cards the size of
credit cards can hold multiple interacting programs. Theséi-applet cards are begin-
ning to be exploited by business and government in securégsport and financial ap-
plications. We conduct a thorough analysis of a programenpyment card application:
a smart card for making purchases which can be customizdtbte @r reject purchases
based on various policies that are installed by users. Weribesa framework for spec-
ifying, merging and analyzing modular policies. We pregeoiicy automataa formal
model of computations that grant or deny access to a resolincemodel combines state
machines with a voting system whereby the vote of each stathime is consolidated
and resolved into a decision to accept or reject. We use sibfedogic as the primary
mechanism for describing and resolving votes. This formadieh effectively represents
complex policies as combinations of simpler modular pelciWe present Polaris, a tool
which analyzes policy automata to reveal potential cosflaastid compiles automata into
an executable form when combined with our on-card policyagan We show the effec-
tiveness of our model in a case-study where actual Uniyeos§Pennsylvania purchasing
policies are encoded as policy automata. We demonstrafedhibility of our framework
with experiments that show that our implementation can edriermal policy automata to
executable Java Card applets whose performance meetgthieeraents for retail credit

card transactions.

COPYRIGHT
Michael McDougall
2005

Contents

Acknowledgments i
1 Introduction 1
1.1 Modeling Policy Merging and Conflicts 2
1.2 ScopeoftheWork. 4
1.3 Limitations of the PreviousResearch 5
1.4 ApplicationsoftheWork 6
1.4.1 Programmable PaymentCards 6
142 NetworkAccess i 9
1.4.3 OtherApplications, 10
15 UseCases 10
1.5.1 Programmable PaymentCard 11
1.5.2 Firewall Configuration 12
1.5.3 Access Control Module Compiler 13
1.6 Contributions 14
1.7 Structure of the Dissertation 16
2 Background 17
2.1 AutomataTheory 17
2.2 Formal Methods and Model Checking 18
2.2.1 Models with Logic Extensions 19

Vi

2.2.2 Formal MethodsforJava 19

2.3 Non-monotonicLogic. 20
2.4 PolicyLanguages 22
2.5 Security Automata 24
26 JavaCard 25
2.6.1 Formal AnalysisWorkonJavaCards 26
2.7 Network Access Policies 6 2
Formal Framework 28
3.1 GeneralPolicies 29
3.1.1 Security Policies 29
3.1.2 PolicyClasses 30
3.1.3 EnforcingPolicies 31
3.1.4 SuppressionAutomata o0 33
3.1.5 Reject-BlindAutomata 39
3.2 Composition. e 41
3.3 EncodingPolicies 43
3.3.1 VWotesandConflicts 43
3.3.2 DefeasibleLogic 45
3.3.3 Defeasible Logic as a Voting Mechanism 51
3.3.4 Other Voting Mechanisms 52
3.35 PolicyModels 54
336 Semantics 56
3.4 Properties of Policy Automata 58
341 Conflicts 58
342 Redundancy. 58
3.43 Refinement 61
35 Analysis e 64
3.5.1 DetectingConflicts 64

352 Redundancy. 64

3.6 EXpressiveness e 67
3.6.1 Translating to Classical Automata 68
3.6.2 Whatthe Model CannotExpress 70

3.7 SUMMArY e e e e e 75

Language 76

4.1 DescriptionofthelLanguage 76
4.1.1 Imported Functions 81
4.1.2 Translation to Formal Policy Automata 82

4.2 Example: APaymentCard Policy 4 8

4.3 Example: Network Access Policies 88

4.4 EvaluationofthelLanguage Q0
441 PoliciesThatCanBeEncoded 90
4.4.2 The Penn PurchasingCard System 93
4.4.3 Comparison and Discussion of Voting Mechanisms 102
4.4.4 Functionality Outside the Scope of the Language 110

45 SUMMAIY o e e e e e e e e 111

Implementation 113

5.1 Architecture 113

5.2 Analysis e 115

5.3 Code Generation and the Java Card Platform 115

5.4 Adding Policies Dynamically 120

55 ExperimentalResults, 221
55.1 AppletSize 122
5.5.2 Purchase Card Response Time 124
55.3 CodeGeneration 125
5.5.4 ConflictDetection 128

5.6 Summary e e 129

Security 130
6.1 Trust Relationships
6.2 Attacks Using the Smartcard Platform 132

6.3 Summary e e e e 134
Conclusion 135
7.1 Openlssuesand FutureWork 351

List of Tables

4.1
4.2
4.3
4.4

5.1
5.2
5.3

The textual elements of the language used to encodeg/potidels 78
University of Pennsylvania purchase card policy 94
The policies of the University of Pennsylvania Fuel Card 96
Which Penn purchasing card policies can and cannot lmeled@s Polaris

policyautomata. 97
Code size for original and modified SET manager applet 122
Code size for selected policy applets 123
Conflict checking execution time for various policy misde 128

List of Figures

1.1 Smartcards can be as small credit cards (or even smaller) 7
1.2 Cascading policies are integrated in one paymentcard. 8
1.3 Polaris as an access control module compiler 13
4.1 Polarisautomataeditor 77
4.2 Structure ofapolicymodel, 77
4.3 Structure of apolicyautomaton. 79
4.4 Structure of (a) anarrowand (b)amode 80
4.5 Example payment card policymodel 85
4.6 A simple firewall policy model allowing incoming packetsstined for

Port80 e 88
4.7 A stateful firewall policy automaton allowing incomingsponse traffic . 89
4.8 A web server access policy automaton protecting image fil 90
4.9 Purchase policy automata for (a) rejecting certairselasf merchants, (b)

imposing a per transaction spending limit, and (c) prevenpurchases

made atnight. L 91
4.10 University of Pennsylvania Purchase Card policieséed as policy au-

tomata(lof2) 100

4.11 University of Pennsylvania Purchase Card policieséed as policy au-

tomata(20f2) 101

4.12 Modified PC9 automaton that overrides the initial PC®maton and al-

lows a $10,000 per month spending limit. 102

Xi

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Polaris architecture 114

Polaris code generationprocess 116
Java code generated from the emergency pélicyl of 2). 118
Java code generated from the emergency pélicy2 of 2). 119
Polaris purchase card responsetime 123
Code generation performance onsmallmodels. 126
Code generation performanceonlargemodels 126
Code generation performance as a function of model sizenall models 127

Code generation performance as a function model of sizdl onodels . 127

Xil

Chapter 1

Introduction

As computer chips get smaller, cheaper and more powerfyktfeeworking their way into
everyday items and appliances. This emerging world wheseythving is equipped with
a computer has enormous potential for offering users newtitmmality and flexibility.
However, care must be taken to ensure that this new flexibities more good than harm;
if everything we own is managed by computers then a bug oranfgguration can have

serious consequences.

TheOpen Embedded Syste(@pEm) project at the University of Pennsylvania (Penn)
(http://securitylab.cis.upenn.edu/opem/) explores the intersection of mod-
ularity, flexibility, dependability and predictabilityssies that arise when we exploit the
new functionality ofembedded devicesmachines, appliances and everyday items aug-
mented with computers. If we want to truly exploit the functality of these small com-
puters we need to design interfaces that allow users to npper$ophisticated configura-
tions, run scripts or even programs on the devices; in otleedsy the devices must be
modular and flexible. Since embedded systems are often ag@dtect or manage criti-
cal resources, these configurations, scripts and programsime well behaved; we need

techniques to ensure they are dependable and predictable.

One concrete example of this need is found in the OpEm grguogect onpro-

grammable payment carddUsers can add their own payment restrictions to the cards

1

to protect against accidental or malicious use by themseftiends, children or employ-
ees. Arecent Wired News article about the project incluaedroents from a member of

payment card industry:

Tony Mitchell, vice president of public relations with Anigain Express, said

the technology could be a hit with users.

“I'd imagine that some people would want that level of cohémad flexibility,”

Mitchell said. “It would add another dimension.”

Wired News, November 7, 2003

This flexibility brings risks with it. A user who installs a wepayment policy will want
some guarantees about the behavior of the modified card tithew policy really take
effect, or will it be overridden by some other policy? Wilethew policy damage the card
or behave in other undesirable ways?

This dissertation addresses this need for flexibility aretimtability in one family of
applications: those that control access to a critical resoun this work we focus on the
programmable payment card application, though we thinkdbleniques could be applied
in other applications such as IP packet filter rules or da@tzeccess rules. This work
establishes a formal framework that helps us understandeastn about systems where
new policy rules are added to existing policy rules.

We integrate this formal model with a prototype developnegwironment, called Po-
laris, to enablenodel-based desigra design paradigm where the same formal model is

used for analysis and as a basis for implementation.

1.1 Modeling Policy Merging and Conflicts

A common task for computer systems is to guard access to arsesorhe policy that is
used to grant or deny access is often based on a diverse skepacpossibly representing

the interests of many different stakeholders. Descributs policy as a combination of

2

sub-policies may aid a developer by allowing her to focus pa piece of a policy at a
time. However, when the individual policies are combineetéhis potential for conflicts
or other interactions that make the combined policy inappate for its intended purpose.
Consider three policies regarding the use of a swimming.@geath policy represents
the interests of a separate stakeholdgyis the policy put in place by the lifeguaré, is
the policy put in place by the business administrators optta, andP. is the policy put

in place by the pool cleaner.

P, In an emergency no one except the lifeguard can enter the dd@ lifeguard can

always enter the pool. No more than 30 people should be indbkgh one time.
P, Nobody except the owner can enter the pool between 5pm and 9am
P. When 100 people have used the pool, it should be closed aadete

The policies are simple to understand and are modular inghsgesthat each is solely
concerned with the interests of the respective stakeholdi@vever, the policies contain
potential conflicts. For example, can the lifeguard enteipthol at 6pm if there were some
kind of emergency? A model-based approach to designingaplémenting such policies
will need some mechanism to reason about conflicts amonglstéders’ interests.

Non-monotonic logics[11] are a family of logics in which neMormation may lead to
previously valid conclusions being retracted. These kgre partially motivated by a de-
sire to capture real world common sense reasoning. For draifye are told that Tweety
is a bird we may tentatively conclude that Tweety can fly. Hesveif we later learn that
Tweety is a penguin we will be forced retract our conclusiNien-monotonic logics are
one possible tool for representing and analyzing the kindoaifflicting swimming pool
policies we see above. We can encode a rule such as “no onateautre pool after 5pm”
by marking it a tentative rule, possibly overridden if werleanore information—for ex-
ample, the lifeguard needs to enter the pool because of algenay.

The policies described above also have features that are naturally represented

as a reactive system. The decision to admit a swimmer depentise previous events

3

at the pool. Imagine a gatekeeper at the pool who has to dedide to let people in.

If the gatekeeper cannot see the pool from where she sits #iheawe to keep track of

how many people have entered and left the pool in order to #teepumber of people in
the pool below 31 (to satisfy the lifeguard) and to stop atingtpeople when 100 people
have used the pool (so that the pool can be cleaned). So owel modt have some notion
of storing information and making decisions based on thhiof past events.

Embedded devices like smartcards have minimal space fangtmformation so it
is undesirable to maintain a complete history of past treticgas. However, we do not
want to arbitrarily restrict what information can be usedake access control decisions;
we should record exactly the minimal amount of informati@eded by policies. In our
framework we accomplish this by making the security posigiesponsible for collecting
their own information.

In order to represent state and handle conflicts we propogberadtscheme for mod-
eling interacting policies. Our model uses classical fistete automata, extended with
some high-level constructs like variables, to model hovigoes react to and store informa-
tion about previous events. We choose automata becauseltbeystraightforward anal-
ysis and it is simple to translate them into code suitableafemartcard. These automata
interact with each other using defeasible logic [56], a nmonotonic logic designed so
that statements can be proved or disproved efficiently—aortant consideration if the
policies must be integrated in a smartcard with limited cataponal power. We have
found that this hybrid approach succinctly models manyqgoedi that one might want to

install on a programmable payment card.

1.2 Scope of the Work

We have the following goals:

e A succinct formal model that can describe stateful, poédigtconflicting policies.

The model should allow us to formally define intuitive prajes of policies—for

4

example, conflict-freedom and redundancy.

e Techniques for analyzing this formal model in order to deiee whether a given

instance satisfies desirable properties.

e A framework for using this model in model-based design. T$ab use this model
as a formal description that is both amenable to analysisaauirce language that

can be used to generate an implementation.

e A working implementation of the framework.

1.3 Limitations of the Previous Research

The current state of the art concerning formal models andiysiseof security policies
is unsatisfactory for a number of reasons. There has beemsxé research in formal
models of computation and formal analysis of those modeisvieuare not aware of any
model that succinctly captures the key features of theawtarg policies we would like to
model.

There are formal models of network access control, espg&iawall rules, but these
are too restrictive to capture the stateful policies rezgpiion a programmable payment
card. Traditional state machine models typically combtagésmachines by taking a con-
junction of separate state machines and do not model palieyactions and conflicts very
well. Non-monotonic logics can model policy interactiotegantly but are clumsy when
modeling stateful, reactive behavior. Furthermore, mostmonotonic logics are not ob-
viously suitable for a platform with limited computatior@dwer. We see a need for a new
formalism that efficiently models the behavior and progsriof stateful access control
policies.

Existing analysis techniques are also insufficient We cauttply write our policies
in Java and use existing Java-specific tools (for example, dditors, type-checkers and

model-checkers) to assure ourselves that our policiesbetlave as intended. This is

5

unsatisfactory for the following reasons:

e A policy developer should concentrate on the core functitynaf a policy—guarding
access to a resource—instead of worrying about the by&-teanipulations and
system calls required by the Java Card. Developers shoulkl with a more ab-

stract representation of policies.

e General purpose Java tools cannot exploit domain-specibwledge to make val-
idating a policy more efficient. Nor are general purposed@ware of the specific

problems that a policy developer is concerned with.

Another approach would be to use an existing special-perfparsguage that is de-
signed for access policies and is amenable to analysis. $Vearaware of any suitable
language; existing policy languages are either not amerabhnalysis, or they are too
application-specific to faithfully model the stateful pmdés we are interested in (for ex-
ample, firewall analysis tools), or they do not handle modatidition or subtraction of
policies, or are not suitable for a limited platform like aamcard.

We overcome these disadvantages by defining a special mufposal model and

customizing state-of-the-art analysis techniques far todel.

1.4 Applications of the Work

In this section we give a high-level description of an apdien of our formal model and

the Polaris tool. We also briefly describe some other passipplications of the work.

1.4.1 Programmable Payment Cards

Our primary application is the aforementioned programmablyment card (PPC). A pro-
totype implementation was created by the OpEm group at Pdmna.implementation has

been extended to use the policy automata framework desdaritibis dissertation.

6

S

Y.

Figure 1.1: Smartcards can be as small credit cards (or enales).

Payment cards are small plastic cards used in commercralacions—credit cards
(for example, Visa and Mastercard), debit cards (bank ATMidgpand charge cards
(American Express) are used widely today. The declining&od size of computer chips
has made it feasible to manufacture ‘smartcards'—a cardhaated with a small com-
puter. Java Cards are smartcards that have a standard ep@nmplwhich allows users or

other parties to install small applications called applets

Programmable payment cards exploit this functionalityrttoece purchasing restric-
tions that are more fine-grained than existing credit castiesys. Payment cards typically
come with a few basic restrictions; a credit card cannotea@ecredit limit, while a debit
card cannot spend more money than is in the correspondirigdimount. However, a
user may want to customize a card to reduce risk or increaseen@nce. For example,
a user may want to temporarily lower the credit limit on a cmdbudgeting purposes.
Such customizations are especially useful when a card igdeamly delegated to some-
one else. For example, a parent might acquire a credit catdham give it to a child,
or an employer will give a company credit card to an emplopeeotver travel expenses.
We refer to parties who pass on these payment carde@mdary issuersand the card

issuing company (such as a bank) is referred to aptimeary issuer Secondary issuers

7

University of
Pennsylvania

—

School of Engineering installs P,

—

Computer Science
Department

installs P, P,

3

installs P4, P5

Smart card

|
______ 1

Figure 1.2: Cascading policies are integrated in one payosed

usually want to enforce some kind of extra restriction; e&epaimay want a child to only
use the credit card for emergencies, while an employer may tegorbid the use of the

card for purchasing luxuries.

The programmable payment card allows users to install &pfilat enforce these re-
strictions. Before an employer or parent gives the card ¢orétipient the secondary
issuer will install one or more policies on the card. If theipgent attempts to make pur-
chases that violate the policy the card will consult the@e$ and refuse to authorize the

purchase.

A card can store more than one policy. This is useful for a remalh reasons. One
party’s purchasing policy might consist of several indeg®nt rules (similar to our swim-
ming pool example) which for the sake of modularity and sigifyl are best specified
as independent entities. It also allows the card to be useal tugrarchy of secondary
issuers, each of which adds one or more policies. For examo@hsider a card issued to
a university, as in Figure 1.2. This card is linked to a pattcresearch grant, which is
administered by the university. It would be handy for a cotepacience professor to use
this card to purchase lab equipment for research relateetgrant, but various parties

want to restrict these purchases to comply with variousersity, school and departmental

8

policies, as well grant-specific restrictions. Complianoald be monitored after the pur-
chases are made by checking the monthly bill but after-#lsednforcement is confusing,
risky and inefficient. Instead, each party in the hieraraistalls the appropriate policy
before passing the card down the hierarchy; the univensgtalls a university-wide pol-

icy, the engineering school installs school-wide policaasd so on, until the card is given
to the professor. The professor may even delegate it to aigtadgtudent after installing
another policy to ensure the student only buys what she hasihstructed to buy.

Since these policies are protecting access to a potenaaijg bank account we would
like to have some guarantees about how policies behave andriepolicy affects another
policy.

We propose using policy automata, described in Chapterw8ite and analyze these
purchase policies.

The programmable payment card is the main application we@msidering in this
dissertation. It is the only one for which we have implemdraeode generator that will

translate policy models into actual running programs.

1.4.2 Network Access

We believe our formal model of policies is applicable in damsather than programmable
payment cards. The second application we will discuss i dissertation is network
access.

Firewalls are network devices that examine network traffiovimg at or leaving a
computer or network. A firewall will be configured with rulésat state what traffic should
be accepted, forwarded or dropped.

Firewalls are usually configured using vendor-specific gumétion files. It is com-
mon, however, to have firewall rules formatted as a list willeeerules earlier in the list
have precedence over the subsequent rules. In practicggmngna firewall is difficult
and error prone. When a new rule is added it is difficult to krifote rule is redundant

because other rules override it. We believe that our poliogehframework can be used

9

to specify rules in a format that is easier to write, undemdt@nd manage.

We also think our framework can model and reason about agifit-specific access
policies. Web servers allow administrators to specify whaliowed to access a particular
document. We believe that policy automata is an appropfaatealism for representing

access to services like web servers.

1.4.3 Other Applications

We think policy models are an appropriate mechanism for @inggpolicies in many con-
texts where access control needs to combine multiple pslici an environment where
low computational resources are available (whether dueamhload or restricted hard-
ware or power). For example, a policy model could be used terohéne the maximum
speed in a car based on the car’s recent behavior, the wedgtg barried and the location
of the car. Some work in the University of Pennsylvania Séglwab has examined how

our model could be used for cellphones that restrict what kincalls can be made.

Additionally, policy models could be used to describe gekdn many general appli-
cations which rely on some form of access control. We enwigideveloper using Polaris
in a manner that is analogous to the way compiler compilkesYacc [37] are used; when
a developer wishes to write an access control module for phcation the access con-
trol policies will be specified using policy automata whiat gompiled by Polaris into a

general purpose language.

1.5 Use Cases

The core policy automata framework is a general frameworichvis intended to be suit-
able for various application domains. In this section wedifew use cases that illustrate

how the framework could be used.

10

1.5.1 Programmable Payment Card

This scenario describes how we envision a developer usaffaimework to install poli-
cies on a programmable payment card.

A developer wants to add a policy to a programmable paymeudt CEhe developer
uses Polaris to create a set of policy automata that impletmemdesired policy. She
downloads the models for the policies that are alreadyliestan the card. Using Polaris,
the developer checks that her new policies will not intradaonflicts with the existing
policies or with each other. Some potential conflicts arentbso the developer alters her
policy automata to avoid the conflict and checks for conflagiain.

Concerned about the limited memory on the card, the develdpks to see if her
new policy automata are redundant—in other words, whetkenéw policy automata ac-
tually change the behavior of the card. She discovers tlebbher automata is redundant
because she accidentally created a trivial policy automttat never votes to accept or
reject a request. She rewrites this automaton so that itveshaorrectly. She discovers
that another automata is redundant because it duplicateficy fhat is already on the
card, so she decides not to install the redundant policy.

She then writes some simple test policy automata in ordealtdate her new policies.
These test automata are akin to test scripts or a partiaifgadion—they describe how
the policies should behave on a certain classes of inputesegs. The developer then
checks whether the test polidyr is redundant with respect to the policidsfor which
Pr is a partial specification. 1P is not redundant then the polici€sdo not satisfy the
partial specification encoded iR and should be rewritten. Fortunately, all the policies
the developer wants to add to the policy satisfy the parpatsications.

Once she is satisfied that her policy automata are free ofictfliseful and have the
intended behavior, the developer uses Polaris’ code gemerfgature to generate Java
Card applets. Each applet implements one of the new polimnzata. These applets are
then installed on the card using a standard procedure fongqalicy applets. This pro-

cedure registers the new policy applets with the existiagdaction processing software

11

on the card, which ensures that the policy applets will besatted for future transaction

requests.

1.5.2 Firewall Configuration

This scenario describes how the framework would be usedrtiiguoe the access policy

in a network device.

A firewall administrator creates a set of policy automataheaf which represents
one particular concern of the administrator. For exampie,automaton guards against a
denial-of-service attack, while another ensures thaiaders can send mail to a local mail

server.

As in the use case scenario for a programmable payment aaed,tbe administrator
has written automata that cover all of the intended ruleadonitting or rejecting network
packets, she uses the Polaris framework to check for canflstte also checks individual
policies to see if they are redundant with respect to therqibiécies. If they are redundant
she might remove them (to make the firewall rules shorter angler) or re-examine
them to see if they really implement the policy she intend8tde will also write small
test automata that function as partial specifications optiiey, and then verify that her

firewall policies meet the partial specifications.

Once she has validated her policy automata she can compiie tih a configuration

file that, when read by the firewall application, enforcespbkcies.

If at a later time the administrator wants to modify a polity\ean add or remove a
particular automaton, re-analyze the new policy autormettaad re-compile the automata

into firewall configuration files.

12

Auto-
mata Jjava Jjava Jjava Jjava Source
file

‘ [I I I

Polaris analyzer &
compiler

'

.java

Java Compiler
I

v ¥ ' ! v

.class .class .class .class .class }— Executable

Figure 1.3: Polaris as an access control module compiler

1.5.3 Access Control Module Compiler

This scenario describes how the framework can be integmati development process
of a general software application that includes some aaz@#sol functionality. For ex-

ample, assume a developer is implementing a server basegpese calendar application
which stores users’ calendars. Users will be able to viewc#iendars of other users, but
the server must hide particular meetings and other infaondtased on who created the

meeting, who was invited, who is viewing the informationgdhe topic of the meeting.

An access control module that is written in a general purposgramming language
will be difficult to write and understand. Since the langueg®t optimized for expressing
policies the programmer will have to worry about low-levaplementation details instead
of how the policies interact. A general purpose programrfanguage will also be harder
to analyze for conflicts or redundancy. Instead, the prograntan use policy automata
as a special purpose language for designing an accesslgooliny. The automata will
then be compiled into an appropriate general purpose lgggsa that the access control
functionality can be integrated with the rest of the appiera This compile process is

illustrated in Figure 1.3.

13

This is analogous with the use of tools ligarser generatorgor compiler compilery
such asyacc [37] or JavaCC [35]. If an application needs to incorporate some pars-
ing functionality, a developer will create a file that debes the intended parser using a
special syntax (usually the relevant grammar annotatdaenitra information). This spe-
cial syntax can be checked for problems specific to parsedsit@an be compiled into a
general purpose programming language implementatioregbinser.

In our case, a developer creates a set of policy automatg &sitaris. The devel-
oper performs appropriate validation steps on the autonnsitegy the kinds of analysis
described in the previous sections—checking for conflreidundancy, verifying that the
test automata are redundant. Once the developer is satigfiethe results of the anal-
ysis, she uses Polaris to compile the automata into a setvafclasses. These classes
include an implementation of the policy automata, code $olke the automata’s votes,
and interfaces that allow data from the other modules of pipdi@ation to be conveyed to

the policy resolution module.

1.6 Contributions

This dissertation is the first thorough examination of a paagmable payment card—a
smartcard capable of holding and enforcing multiple modpilacchasing policies. Build-
ing on the application and architecture developed by thkeawdnd others in the OpEm
group[22], this dissertation explores the applicatiomgs variety of approaches: a for-
mal analysis of the application, an effective language twdg realistic policies, and an
implementation of the application as well as a tools for suppg the application.

In our formal examination of the application we propogedicy automataa new
formal model of modular access control policies which depen the history of past
transactions. Policy automata resolve conflicts througttiag mechanism which is based
on defeasible logic. Information about the transactiotonysis kept as local state by each

policy. Policy automata is a unique formal model of policyegration, and is the first

14

model to combine state machines with defeasible logic.

This model can be seen as an extension of the security awddaratalism of Schnei-
der [60] and Ligatti et al.[41]. We have extended this workd®fining a new form of
enforcement that is appropriate for our application, arm@d that suppression automata
can enforce exactly the class of safety properties usisgdinm of enforcement. We also
extended the work by identifying the problem of building ptgssion automata through
composition—a problem that is solved by composing polidpaiata which collaborate

through our voting mechanism.

Using this model, we have defined formal properties of paynsard policies like
conflict and redundancy that correspond to useful realehmndperties. We have proposed
algorithms to check these properties.

In addition to our formal results, we have demonstrated thatformal model can
effectively represent real-world purchase policies. Iragter 4 we show that ten of the
twelve purchasing card policies used for the University ehisylvania purchase card
can be encoded as policy automata. We also demonstrate hhoxeting mechanism can
concisely encode policies which would be cumbersome or gsipte with other voting

mechanisms.

Finally, we have demonstrated the practicality of our psggbmodel-based design
approach to managing programmable purchase cards by irapterg Polaris, a working
system for integrating and enforcing payment policies. sTimplementation enables a
policy developer to create policies using an abstract maaeivert that model to Java
Card applets, and then integrate and run those applets sthéyaenforce the relevant
purchase policies. This implementation includes the firsrscard implementation of a
defeasible logic inference algorithm, and we have adapte&mnown inference algorithm
in order to reduce the use of RAM and take advantage of theeslout cheaper EEPROM

memory available on the Java Card platform.

Our experimental results show that our system offers aab&pperformance for im-

plementing realistic policies, for both a policy designdromvants to analyze or compile

15

policies and a cardholder who wants to purchase items withodue delay during the

purchase.

1.7 Structure of the Dissertation

The next chapter gives an overview of the technology andipuewesearch which we
have used in this work, as well as other approaches that hesue Ussed to solve similar
problems. Chapter 3 gives a formal analysis of the apptioaincluding a model of se-
curity policies. It proposes policy automata as a mechafism@nforcing the policies and
describes some formal properties of policy automata. @naptescribes the language
we use to easily encode policies and illustrates its exwessss by showing how a range
of realistic policies, including policies drawn from the iMersity of Pennsylvania pur-
chasing rules, can be effectively encoded. Chapter 5 descaur implementation of the
Polaris system, which includes an editor, code generatatysis algorithm and on-card
policy management software. Chapter 6 describes some cfettigity issues raised by
our system, including the assumptions we need to considesystem secure. Chapter 7
concludes the dissertation and discusses some open issdig@ssible future research

directions.

16

Chapter 2

Background

This work builds on an extensive history of research in aatiantheory, formal methods,
model checking, security policies and non-monotonic lodit this chapter we survey

some of the literature that is related to our work.

2.1 Automata Theory

Our policy automata are based on classical finite state regsli&e finite automata and
regular expressions. Literature on finite state systenenedstback to the 1940s in work
by McCulloch and Pitts [53]. Finite state systems are disedsn standard theory of
computation textbooks such as Hopcroft and Ullman’s [30jicl also includes discus-
sion of composing automata to create new automata (for eeaitig@ construction of an
automaton that recognizes the intersection of two regalaguages). In Section 3.6.1 we
compare our formal model to Mealy machines [30], a classiaahtion of finite automata
that writes a sequence of symbols to output instead of siqagpting or rejecting like a
finite automaton.

Using state-machine-based models for high-level desgqgite common in software
engineering (e.g. Statecharts [25], UML [9]). These modadisen extend classical fi-

nite state automata by adding variables and other high{ewvguage features. Our work

17

on policy automata, especially the Polaris environmentcfeating automata, is partly
inspired by the adoption of these models.

The voting mechanism that we use for composing the decisignsdividual policy
automata is unusual compared to most languages and fornakdisnaf computation, but
it is similar to howcombined valued signalsork in the reactive language Esterel [7].
In Esterel, signals are a form of instantaneous outpatuedsignals contain some data.
Since a signal is instantaneous, if two different parts of@mam both emit a valued
signal there needs to be some way to resolve the two or manalsigto a single signal.
An Esterel programmer must specify a binary operator lilgitazh, conjunction, or even
some programmer-defined operator. If multiple modules ensignal the actual signal
emitted (that is, seen by the environment and other partiseoptogram) is the result of

applying the operator to all the signals. For example, aadigan be declared as:
output MySignal := 0: combine integer with +;

which indicates thaMySignal is a signal containing an integer, and multiple signal
emissions will be combined using the addition operator. fragram had statements
“emit MySignal(2) "and “emit MySignal(3) ”thenMySignal would take on

the value 5. We could also specify a custom operator as fsllow

output MyOtherSignal

= 0: combine integer with CustomOp;

whereCustomOp is an arbitrary binary operator implemented in another lzgg.

2.2 Formal Methods and Model Checking

This work builds on a wide range of previous work in formal huets [16], especially
in model-checking [15] techniques. One example of a matuwdehchecking tool is
SPIN [29], which explores the reachable states of a systepebiprming a depth-first-

search of the execution paths of the system.

18

Hermes [2, 3] uses a language in which state-machines aeded with scoped vari-
ables, exceptions, data structures and code re-use. Arsystepecified using a hierar-
chical graphical language. Hermes has enumerative anddiymnstate search algorithms
which are optimized to exploit the hierarchical structuf@system. For example, if a
procedure is called from multiple locations in the systeenthwhen searching the pos-
sible execution paths, Hermes will attempt to re-use infirom about the procedure. If
the procedure was called in one context then subsequesficath other contexts will not
trigger another search of the procedure. Hermes also cgsseremory by ignoring state
information that is not relevant at a given program locatidar example, if a variable is
out of scope at a location in the program then the memory useddk that variable can
be used for other data. Polaris uses much of Hermes’ codedaipulating, saving and

type-checking state-machine-based languages.

2.2.1 Models with Logic Extensions

There is some formal methods work which combines non-iawit logics and state-
machine-based models. Easterbrook and Chechik [14] amaherged state machines
by using paraconsistent logics to capture the possiblynisistent views of the system.
Siddigi and Atlee [61] use a hybrid model that combines sti@esitions and logical as-
sertions to model and analyze feature interaction conflictslephone systems. Hay and
Atlee [26] define composition operators that allow labeleshsition systems to execute
in parallel without conflicts, possibly by overriding thdests of low-priority transitions.
Neither approaches are obviously suitable for modelingaaralyzing the policies of the

type we model using policy automata.

2.2.2 Formal Methods for Java

This work was partly inspired by the need to reason about #tewor of policy ap-

plets that were written for the OpEm Programmable Purchase @roject [22]. We have

19

chosen a model-based approach in which we use a high levalrnwodescribe the policy
applet's behavior and rely on automated tools to generaeuwtable code from the model.
An alternate approach would be to check the behavior of th&etgpusing a formal meth-
ods tool for Java. Even with our model-based approach tlseaegpossible role for such
tools to check properties of imported functions—we dis¢hssissue in Section 4.1.2.

The Java Modeling Language (JML) is a standard for anngatava source with
special comments that express properties of the code. ikekhe LOOP compiler [70],
the Extended Static Checker for Java (ESC/Java) [18] andI&8&(2) [32] can check that
the code actually satisfies the properties specified in JWR]. §ives an overview of JIML
and its tools.

The Bandera project [68] develops tools for validating Jararams by writing spec-
ifications and then verifying those specifications using etathecking and static analysis
techniques. NASA's Java Pathfinder tool [71] uses modetkihg to find runtime errors

like uncaught exceptions, deadlocks and violated assettio

2.3 Non-monotonic Logic

A non-monotonic logi¢s an extension of traditional logic that models the non-otonic
reasoning that is common in the real world. In traditiongléove make conclusions based
on known facts. If new information is added to the system thectusions that we have
already made are still valid. Traditional logic is ther&fanonotonic; new facts can only
lead to new conclusions. In non-monotonic logic new infalioramay force us to retract
conclusions. In Chapter 1 we have already mentioned a sthedample: most birds fly,
so if we are told that Tweety is a bird then we can tentativelyotude that Tweety can
fly. However, if we later learn that Tweety is a penguin we Wil forced to retract our
conclusion that Tweety flies.

The family of non-monotonic logics contains many differémimalisms of non-mo-

notonic reasoning. Brewka et al. give an overview of theoussiapproaches in [11]. Here

20

we mention the formalisms that are most related to our vaysgem.
At the end of the 1970s a number of non-monotonic reasonistesys were first
proposed. Reiter [59] proposdeéfault logic which extends traditional logic by extending

the known facts of a theory with a set of defaults of the form

A Bb ey Bn
C
whereA, By, ..., B,, C are all classical formulas. The default is interpreted devi: if
A is provable and-B; is not provable for ali = 1,...,n then we can conclud€. For

example, we can write a default expressing the notion thdslwan usually fly as

bird(x) : flies(x)
flies(x)

In plain English, this default says that we can concludedhgiven bird can fly unless we
have evidence that it cannot fly (that is, unledies(z) is provable). We can write a more

specific default as
bird(z) : flies(z), hasWings(x)
flies(x)

This states states thatifis a bird and we have no reason to believethtmnnot fly, and

we have no evidence that threhas no wings, then we can concludéies.

In a default logic theory the set of facts is extended by apglyglefaults to generate
new conclusions. These new conclusions may then make ogfeunlts applicable. Ap-
plying defaults until a the set of facts reaches a fixed powggus anextension The
inferences of a theory are those formulas which are cordamall possible extensions.

A similar non-monotonic formalism imaximal consistency logi&8]. In maximal
consistency logic, classical logic premises are sortedriyify. For example, we can

write our running example as

p1: bird(z) = flies(x)
pe ¢ penguin(x) = —flies(x)

ps @ bird(x) A penguin(x)

21

whereps > p, > p;. Sinceps, > p; we should ‘prefer’ conclusions that rely gn over
those that rely om;.

Both default logic and maximal consistency logic are exgik@senough to describe
a variety of complex policies where some sub-policies d&father higher priority sub-
policies. Unfortunately, computing inference for thesgids involves computation inten-
sive operations like computing fixed-points and choosingr@gmmany chains of reason-
ings (for example, checking inference in default logic is@wen in NP [13]). This makes
them undesirable for resource-constrained devices liketsrards and many network de-
vices. It also makes analysis more difficult.

To work around this problem of intractability we choose Nutiefeasible logi¢56],
which is a pared-down non-monotonic logic that is desigreefficiency. It differs from
the approaches described above in that it only containslst@nd inference rules about
literals. This makes inference much easier to compute;d#/&s a linear time algorithm.
A detailed introduction to defeasible logic is given in $ect3.3.2.

Non-monotonic logics often give paradoxical or non-int@tresults. This is espe-
cially undesirable for use in modeling security policiefiene a mistake in the policy can
lead to security breaches. To mitigate this problem we isdlze defeasible logic from

the state update operations of our policy by restrictingalyé to the voting system.

2.4 Policy Languages

Various policy specification languages have been propd3athianou et al. [17] use the
Ponder language to describe access control policies. Hodglt al. [28] use a graphical
language to describe security policies. Both of these ambres target a wide range of
access control applications and it is not clear how amernhbl&anguages are to analysis.
Lupu and Sloman [42] discuss a number of strategies for vagppolicy conflicts,
including assigning explicit priorities to policies, ctgmwg policies that are ‘closer’ to

the subject of the policy, or defaulting to denying permassiFor each choice they give

22

examples where the strategy is problematic.

There is related work using non-monotonic logics for reasgpabout policies. Grosof
et al. [21] represent business rules using courteous lagigrams, while Antoniou et
al. [4] use defeasible logic to represent administratipil&tions governing, for exam-
ple, exam scheduling. These approaches encode the enlitg a® statements of non-
monotonic logic statements; in contrast, we isolate thilpart of our model in the voting
mechanism, and update state and choose votes using p@estahine mechanisms. As
discussed in the previous section, this separation is etetvby the desire to use a for-
malism where it is most appropriate; defeasible logic ie@fie at resolving conflicts,
while state machines are effective at recording state. We w@ncerned that encoding a
policy entirely in defeasible logic would increase the atenf design errors, since non-
monotonic logics are prone to paradoxes and are unfamilm 8 many programmers,
let alone people who design policies. This separation dlsws us to treat the voting
mechanism as a parameter in our framework—if another vatiaghanism is preferred
much of the formal results and implementation describetisdissertation would still be

applicable.

Miro [27] uses a graphical language, allows policies to aderother policies, and

analyzes policies, but it is targeted at file system security

Halpern and Weissman [24] propose using a fragment of fid+dogic called Lithium
as a security policy model which accommodates merged psl&nd has a tractable al-
gorithm to determine access rights. The restrictions thatie tractability guarantee that
the merged policies are consistent. Like our policy modehfdism, Lithium is designed
to be efficient and handle policy composition. Lithium asssran environment of facts
that are available to the policy engine, while our policycsméta update their own state to
record the information relevant to their decisions. We ettbgs strategy primarily because
we wanted to avoid storing extraneous data about past traoiss since the smart card
platform has so little memory available. We were also mogigleby a desire to preserve

a very simple interface between a policy enforcer progradveimatever system manages

23

transactions—this interface would be more complex if peichad to query this system

to make policy decisions.

Stoller and Liu [63] propose a technique that takes a trustagament policy de-
scribed in Datalog and generates a lightweight implememahat checks the policy,
allowing the use of such policies in resource-constraimedexts like embedded systems.
A security policy framework has two components: a policyglange and an algorithm
which, given a policy and a request for service (for examalegquest to enter a build-
ing), checks whether the request satisfies the policy. Oneclsaose a policy language
so that there is an algorithm with which any request can bekdtkagainst any policy
efficiently. Instead, Stoller and Liu suggest optimizing #igorithm for a specific policy
(which presumably changes only infrequently) so that thecpspecific algorithm can

check requests efficiently.

2.5 Security Automata

Schneider [60] usesecurity automat#& model access control policies and generate mon-
itors that enforce correct behavior. Policies are treasgoredicates on sets of traces, and
Schneider identifies a subset of policies which can be eafbby automata-based runtime

monitors.

Ligatti et al. [41] extend this work by generalizing Schreid automata to include
automata which block bad actions or fill in missing actionfieyf show how these new
automata differ from Schneider’'s automata with respedbhéddrmal definition of policy
used in [60].

The policy automata formalism proposed in this dissentaten be seen as an adapta-
tion and extension of this line of research; our policy medek effectively the same as
the automata which block forbidden actions—in our casegsmdble transactions. We

adapt this line of work by showing how the formal definitiofffeetively model a concrete

24

application—the programmable purchase card. We give &ctefé method for compos-
ing automata, since the composition technique propose@dhdoes not generalize to
the automata of [41]. Such a technique is important becaokegs are much easier to
understand and modify if they can be broken into smallerilzies; any policy enforce-
ment mechanism that can handle the large lists of policegsatheal enterprise require will
need to be able to compose policies. Sections 3.1 and 3.@sdisice relevant aspects of

the security automata work in detalil.

Fong [19] classifies security automata by the amount of st@ekeep and examines

how such limits impact the policies they can enforce.

2.6 Java Card

Java Card [54] is a standard open platform designed to runsonaatcard. A Java Card
compliant smartcard has a small virtual machine which ryopets which are written in

a version of Java [5] adapted for low-resource environments

The platform is described in specifications [64, 66, 65] Hratavailable for free on-
line. These specifications leave open many of the detailgredmmhically installing applets.
The GlobalPlatform standard [20] fills in many of the detagdgarding the management

of multiple applications on a single smart card.

Lyubich [45, 43, 44, 46] has implemented the Secure Eleatrdoransaction (SET)
protocol [49, 50, 51, 52], a secure purchase protocol, orva Qard. This software has
been extended by the OpEm group at University of Pennsydvigdl] to implement a
prototype of the programmable payment card applicatiorere/tthe user can install ap-
plets that approve or reject transactions before the tctiosetakes place. We extend this

OpEm implementation for some of our experimental resultShapter 5.

The Java Card designers recognized the dangers of letterg usstall arbitrary ap-

plets. A Java Card virtual machine (VM) must enfoeglet firewalls a mechanism for

25

preventing objects from one applet manipulating objectstirer applets. Java Card ap-
plets are also required to respect the Java’s strong tymingnse, but verifying applets
are well-typed has traditionally been performed off-caidce the verification has been
assumed to require too much memory. Leroy [39] has proposeadified applet format
and algorithm that can be executed on card, removing the toetedst the compiler that

generated an applet.

2.6.1 Formal Analysis Work on Java Cards

In recent years, there has been a lot of research on formaloeefor Java cards, espe-
cially by the VerifiCard project [34]. Much of this work usdsetJML tools mentioned
in [12]. This research typically focuses on proving comests of protocols and API im-
plementation, or ensuring that applets behave as specifi§d To our knowledge, the
problem of adding policies dynamically and merging thenhvexisting policies has not
been addressed beyond verifying that an applet respectotistraints of the Java Card

platform.

2.7 Network Access Policies

Guttman’sfiltering posturesvork [23] and the Firmato tool [6] of Bartal et al. use domain
specific high-level languages to describe firewall poli¢gsa set of networked comput-
ers. The languages are specific to firewall rules and do natidesstateful policies that
react to the history of arriving packets. These approacteealao directed at distributed
policies, while our approach focuses on the policies of glsidevice. While Firmato
does not perform any formal analysis on the models of firay&iuttman presents an
algorithm for checking that the distributed firewall implentation satisfies a high level
policy. Neither approach treats policies as independexiutes with priorities that change
according to circumstance.

We think it is possible that these approaches could be caedbirith our formalism.

26

In such an approach policies would be described using palitgmata instead of simple
pattern matching on packets (for example, packets goingtbg® at address 1.2.3.4),
while the algorithms and language for managing multiplevoek devices would remain
mostly unchanged.

In addition to Guttman’s work, there are several tools tmatlygze firewall rules. For
example, Wool's Lumeta firewall analyzer [72] generatestadf all traffic that a firewall
permits, and highlights common firewall configuration esroiThis tool only analyzes
static firewall configurations and can not therefore haniestateful policies we model

with our formal framework.

27

Chapter 3

Formal Framework

In this chapter we analyze the programmable payment caticappn formally. We begin
by introducing thesecurity automatavork of Schneider[60] as a basis for a formal un-
derstanding what a payment card policy is. We go on to disetiss it means to enforce
such policies, introducing a new notion of enforcement appate for our application.
We show howsuppression automatantroduced by Ligatti et. al[41], are capable of en-
forcing a class of policies, but lack an effective compositnechanism that would allow a
policy designer to construct complex enforcement mechasfsom simpler mechanisms.
To solve this problem, we introduce a new formal model cafielicy automatawhich
combines state machines with a voting mechanism based easible logic to effectively
and succinctly model payment card policies. We discusseh@astics of the policy au-
tomata model and define some properties of policy automatawbuld be of interest to a
policy designer. We also present some algorithms and tqabeifor checking that a set of
policy automata satisfy such properties. Finally, we ctizréze the expressiveness of our
new model by discussing what can and cannot be modeled, aconyaring the model

to classical models of computation.

28

3.1 General Policies

Schneider[60] investigated the properties of formal deéins of security policies. This
work concentrated on policies that can be enforced by aime+nonitor—for example, a
monitor that wraps untrusted mobile code so that it cannwhhlae environment in which
it is being executed. Such a monitor could watch a progranmbéouk any attempt to send
information on a network after a disk has been read. Schngidposedecurity automata
as a formal model of enforcement mechanisms. This work waesdatended by Ligatti et
al.[41], who examined automata with extra capabilitiese $acurity automata framework
is general enough to be applied to our programmable paynaetitapplication where we
want to protect financial resources like a bank account fraisea is only partially trusted.
In this section we present the aspects of the security adsoirzanework that are rele-
vant to our application, adapting the examples and praggetdi our particular application.

We follow the presentation in [41].

3.1.1 Security Policies

Let T be afinite set of events. We wrii& for the set of finite-length sequences of events
in T'. A security policyis a predicate on sets of event traces. In other words, a seioafs
Y. C T* satisfies security policy if and only if P(X).

In our case, the set of events is the set of possible transaai user attempts to make.
For example, an event could be “buy one gallon of paint frormiddepot for $30 at
11am on November 2, 2004".

We use the following notation for sequences: We write thetgrapquence as and
use the notation; 7 to denote the concatenation of sequencasdr. We writeo|..i] for
thei-length prefix ofs, andc[i..] for the sequence that includes thth element ot and
all subsequent elements. Therefere- o|..i]; o[(i + 1)..].

The set of security policies defined above is broad enougaptuce policies like non-

interference: given two evenisb € T, we may require that the appearance of an exent

29

yields no information about whether evérappears in a trace. In other words, the policy
is true for a sek2 C T if b never appears in a trace dhor some traces have boirandb
while others haveé withouta. In the context of mobile codemay be an event visible to
outsiders whilex occurs when the last bit of a secret key is 1. If the policy bdlken an
observer who sedscannot infer anything about the value of the secret key. érctintext
of payment cards such a policy could be used to prevent diorugeventa may denote
the cardholder receiving a payment (for example, an eleci@onpaign contribution) from
a merchant, whilé denotes the cardholder buying a large item from the merchems
payment: may be an innocuous event or it may be a bribe to secure theadet’s future
business. If the eventis independent of then we can be confident thatvas not a bribe.
Another policy could enforce a credit limit on a credit catdet the event; denote
spendingsi on an item where could range from 1 to 100. A policy to enforce a $50 credit
limit would have the following predicate:

P={ceT*) i<50}

a; €0

3.1.2 Policy Classes

Alpern and Schneider[1] identify a subset of security geavhich are callegroperties
A property is a policy that can be identified by looking at eaglcution trace without
referring to other possible traces. Formally, a politys apropertyif there is a predicate

P over traces such that

P(¥) =VYo € .P(0) (3.1)

Note that our non-interference policy is not a property; \@e oot tell if the sequence
a; b is permitted without checking to see if there is another saga with ab but noa

in X. (The non-interference policy needs to reason about diffepossible traces and
is therefore reminiscent of branching-time temporal lsgiwhich can reason about the
existence of different execution paths starting from a camstate. In contrast, a property

necessarily focuses on a single trace and is therefore igrait of linear-time temporal

30

logics. In fact, the ternproperty comes from the literature on linear-time concurrent
program verification.) A predicat® on traces induces a propetfyon sets of traces so
when we refer td” as a property we mean the induced propéttat satisfies (3.1). Our
credit limit policy is a property, as the total money spenoire trace does not depend on
the other traces accepted by the predicate.

A safety propertys a propertyP such that
Vo € T*[~P(0) = Y7 € T*.=P(0;7)] (3.2)

There are properties that are not safety properties. Fangbea a policy may require
that every time a cardholder borrows money—euenrthe cardholder eventually pays
the money back—event This policy is a property; one can check that a given trace
obeys the policy without examining other traces. Howeusg, dequencé violates the
policy (the money is borrowed without being paid back) while sequenck p obeys the
property. If we set = b andT = p then we see that (3.2) is not satisfied. Intuitively, a
safety property is a property that can be verified by lookirgfanite prefix of the trace—
we do not have to wait to see if some event occurs later in #wtwhich will change a

bad trace into a permitted trace.

3.1.3 Enforcing Policies

Schneider introduced security automata as a mechanismrmforcang policies. These
automata read a series of events emitted by a target progrdni they detect a policy
violation they terminate the target program. Ligatti et géneralized these automata,
defining additional automata classes which can remove gviersert events, or do both.
The first of Ligatti's classes, callesuppression automatas of special interest to this
work, as it is an appropriate model for a payment card manitor

Formally, a security automaton is a deterministic finite @aartably infinite state ma-
chine(@, g0, A). Q is the set of states of the machine. The initial statg.iJ hetransition

functionA specifies how the automaton reacts to its inpt-varies for different types of

31

automata, and will be specified in detail below. The automegacts to input in a series of
steps of the fornio, ¢) = (0/, ¢') whereo is the sequence of events that the target wishes
to execute and is the state of the automaton before the step is takeis, the sequence

of events waiting to be executed after the stepgrislthe state of the automaton after the
step;T € T* is a sequence of events which take place during the step. tbalkgvents in

T are observable—these are the only events which actuallgétrtpe environment. For
example, in a programmable payment card, the observabidsesaee those transactions
which take place. We writér, ¢) = (¢’, ¢') to denote zero or more steps yielding output
T.

Ligatti [41] identifies two abstract principles for effeaily enforcing a property:

SoundnessAn enforcement mechanism must ensure that all observahpetsuwobey the

property.

Transparency An enforcement mechanism must preserve the semantics obitaxes

that already obey the property in question.

These principles take a fairly liberal view of enforcing ipeds. Consider an enforce-
ment mechanism which outputs no events for an input thaaigela policy. Such a
enforcement mechanism would satisfy both principles, behsdraconian enforcement
would not be satisfactory in a programmable payment cardegbrnwhere a cardholder
who accidentally violates a policy would like to be able tontoue making valid pur-

chases. We therefore add the following (imprecise) priecip

Minimality An enforcement mechanism must ensure that observabletswdifier from

the input as little as possible.

This principle will be made precise below.

Ligatti et al. formalize the soundness and transparenaciplies as follows:

Definition: An automatonA with starting statey, precisely enforcea propertyf’ on the

system with event séf if and only if Vo € T, 3¢’ € @ 30’ € T* such that

32

!

1. (0,q0) = (-, ¢),

2. P(¢'), and

ol..i

3. P(o) = Vi 3¢". (0,q0) =) (o[i + 1., ¢")

An automaton that precisely enforces a property will aceegtinput sequence that satis-
fies the property and output the same sequence of eventbeFRudre, if a property does
not satisfy a property the automaton will output a sequehewents that does satisfy the
property. Additionally, the automaton works in lockstepwihe target on a valid input:
every time the automaton reads an input event it outputsaime ®vent.

Precise enforcement ensures soundness (only valid outguesces are produced)
and transparency (a valid input sequence will simply be exbpo output). However,
precise enforcement puts no restrictions on the behavian @utomaton given an invalid
input sequence. Assunie = {a,b} and assume that properfy, requires that everit

never occurs. Consider the automatywith the following behavior:
e (a;0,q0) = (0,q0)

e (b;0,90) — (-,)
A, terminates as soon as the fitsts seen. If nob events are seen then the automaton
simply copies the input event to output. The automaton therefore precisely engorce
P,. However, given sequeneéaa the automaton will only output and then halt, when

outputtingaaa would satisfy the property and be, in some sense, closeretdattyet’s

intended execution trace. The automaton does not satisfynthimality principle.

3.1.4 Suppression Automata

Ligatti et al. examine a family of automata that can enforobcpes. They classify au-
tomata into four familiestruncation automatasuppression automatasertion automata
andedit automataAs only the first two are required in this discussion we vghaore in-

sertion automata and edit automata. Interested readeseeahe details in [41].

33

A truncation automatoris a security automaton specified b9, ¢o, 0) where, as in
the case for security automata,is a finite or countable set of states, agds the initial
state. The transition function is a partial function 7' x Q — @ that specifies how the

automaton reacts to input. The truncation automaton updatetate as follows:
o (a;0,9) = (0,¢)if 6(a,q) = ¢
e (0,q9) = (+,q) otherwise.

The automaton copies input events to output so long iasdefined on the current state
and input event. When a state and input event is reached fiwhwitis not defined the
automaton halts, terminating the target.

While a truncation automaton enforces a policy by termigpéi target, suppression
automatonenforces a policy by blocking certain actions. More formadl suppression
automaton has four componerts, ¢, 6, w), where@ andgq, have the same definition as
in a truncation automaton, ards again a partial function : 7' x Q — (. The patrtial
functionw : T' x @ — {0, 1} specifies whether an input event should be copied to output

(1) or suppressed (0). The possible single steps of a sigpnesutomata are:
e (a;0,q9) % (0,q)if §(a,q) = ¢ andw(a, q) = 1.
e (a;0,q) — (0,¢)if 6(a,q) = ¢ andw(a, q) = 0.
e (a;0,q) — (-, q) otherwise.

Ligatti et al. showed that truncation automata can pregiseforce a property if and
only if the policy is a safety property. Perhaps surprigmtile ability of a suppression au-
tomaton to selectively block events rather than halt exeowtoes not allow suppression
automata to precisely enforce any more properties tharcadtion automata. A suppres-
sion automaton can also precisely enforce a property if ahgdibthe property is a safety
property.

Ligatti et al. show that if we allow an automaton to change kdviaput sequence into a different

34

Recall our property5b which requires that evehinever be observed. If the monitoring
target is a piece of untrusted mobile code then it may be nede to halt the target when
the forbidden event is encountered. However, if the momitptarget is a programmable
payment card holder and evérdenotes a purchase of a forbidden item it seems natural to
let the cardholder continue making purchases even thouglttempt was made (perhaps
accidentally) to violate the purchase policy. For examitile,University of Pennsylvania
purchasing policy says that (among other restrictions)lboghes can be bought with the
corporate card but bottled water cannot. Given that it waurtple to forget small details
of such a complex policy, blocking all purchases after amjation seems too draconian.

A suppression automaton has the option of permitting pwehafter denying a purchase.

Let S, be the suppression automaton with the following possilepsst
* (a;0,9) = (0,q)
e (bjo.q) = (0,9)

On inputabaa our truncation automatod, simply outputs:. The suppression automaton
Sy outputsaaa—a sequence much ‘closer’ to the input sequence. In some s#ris
makes suppression automata a more powerful class of seautdémata, since, in addition
to soundness and transparency, they can satisfy our mitynpainciple. We make this
precise below.

We would like a formal definition of a type of enforcement tbaptures this sense that
suppression automata are a ‘better’ enforcement mechdh&niruncation automata. We
do so using an abstract partial order, and then investigateandidate partial orders.

An approval sequencss a finite-length binary sequencec {0,1}*. We define an

operatorz : 7" x{0,1}" — T* that removes events in a sequence when the corresponding

but semantically equivalent output sequence then suppreagtomata are more powerful than truncation
automata. If we were willing to let our cards behave more antsgwho are permitted to split a single
transaction into multiple transactions, switch a purcHase one merchant to another similar merchant,
or otherwise manipulate transactions, then semantic alguige of transactions output sequences would
applicable to programmable payment cards. However, weestigsers would uncomfortable with such
functionality and would allow cards to perform a very miniraaount of manipulation at most. In this
work we therefore concentrate on automata which are limadadocking transaction requests.

35

element in the approval sequence is a 0. Formally,

(a;0)® (1;8) = a; (0 @ B)
(a;0)®(0;8) = (0 @ B)

For exampleabaab ® 10011 = aab, abc ® 011 = be. Essentially, ther operator selects a
subsequence of an event sequence. Notesthal ’l = o.
Given a partial ordering< of approval sequences, an automatbr-gracefully en-

forcesa property? if and only if

e A precisely enforce®, and

o if (0,q0) % (¢)then3B e {0,1}*. o @B =0 AP(c®@)= 3 £
(Note thats and ' are necessarily the same length in the above definitiongrrimdlly,
an automaton gracefully enforces a property if it precigsiforces a property and if the
input sequence violates the property, the automaton sspgsgust enough events to make
the input sequence valid. If there is some other subsequémsents that can be removed
to make the event sequence valid, then that subsequencesimaller (according to our
partial order) than the subsequence chosen by the automéleocan view this as a target's
desired sequence of events degrades gracefully when dttegh property.

One obvious candidate for a partial order is to order apps®@uences by the number
of O’s in the sequences; intuitively, the less rejected &s/dre better the automaton. Let
=<4 be the partial order such that<. g’ if and only if 3 contains fewer Os thaf. Note
that 1" is the minimal sequence of length which corresponds to our intuitive notion
that we want to approve everything we can safely approve. edew there are simple

properties which cannot be..-gracefully enforced by a suppression automaton.

Claim 1 There is a property that cannot be-gracefully enforced by a suppression

automaton.

36

Proof. Consider a set of evenis= {1, 2, 3} representing the number of dollars spent
in a transaction and a property which requires that no maxa #4 be spent in total.
AssumeA is a suppression automaton thag-gracefully enforces the property.

The event sequence 1;3 does not violate the property, se dipcecisely enforces the
property A must simply copy the input events to output. The first 2 stépS®execution
on 1;3 arg(1;3,q0) = (3,q1) = (-, q2)-

If cardholder attempts to make the following sequence otipases 1;3;1;1 then the
minimal possible approval sequence (usingtheordering) is 1,0;1;1. Howeved’s next
step depends entirely on the current state and the next @aveut. So the first two steps
of A’s execution will be identical to the steps listed aboye;3; o, q) N (3;0,q1) 3,
(0, q2). Which meansA does not induce the 1;0;1;1 approval sequence, which treref
meansA does not<.-gracefully enforce the property. O

Obviously the< partial order does not yield a reasonable definition of drdce
enforcement; it requires an automaton to select a minimavalid approval sequence
that may depend on values of the input sequence which arenmogdiately available—
something which is impossible for some properties. Theeeotiner more practical rea-
sons to object to such enforcement; a cardholder who tripsitchase an item that will
not break his credit limit would probably be upset if his cegficted the purchase in order
to approve two or more later purchases.

We define a more practical partial order which uses an ordering similar to lexico-

graphic ordering. The order is defined as follows:
e 1 <0
e 1:0 <,0;0
e o0 =<0 =1,0<,1;00 N0;0 <,0;0’

Informally, approving the first event is more minimal thajeoting the first event. If

two approval streams agree on the first event then we order byewhatever order is

37

implied by comparing the streams without the first elememicé&again]” is the minimal

sequence of length.

Theorem 2 Any safety property’ has a corresponding suppression automaton that can

<,-gracefully enforceP.

Proof. The proof extends the proof of Ligatti et al. [41] that shoWwattevery safety
property can be precisely enforced by a truncation automato

We construct a suppression automaton thagracefully enforces” as follows:

e States:q € T* (the sequence of events seen so far). To distinguish betasen
guences and states representing sequences wesatehe state representing se-

quencer.
e Start statey, = - (the state representing the empty sequence)

e Transition functiony and the approval functian: In states if we see input event

then

— If P(0;a) thenw(a,7) = 1 andd(a,7) = 774

— If =P(0;a) thenw(a,7) = 0 andd(a,7) = &

Note that it always holds that if the state of the automatartigens is the output sequence
seen so far ané (o). This can be shown by an induction on the steps of the autamato
We need to consider two cases to show that the automatgmacefully enforces the

property P for any sequence € T*.

e Case P(c): When P(c) the automaton behaves exactly as the automaton con-
structed in the proof of Theorem 1 in [41]. So we know that tb&omaton pre-
cisely enforces” ono. Let 3 = 11°/, the minimal approval sequence of lengh.

The automaton emits ® 7 = ¢ and, sinces is the minimal sequence possible,
]5(0 ® (') = [4 B for any other approval sequengéof lentgth|s|. So the

automaton<;-gracefully enforces’.

38

e Case—P(0): Let ¢’ be the event sequence emitted by the automaton. It's clear
that P(o’) since the automaton can only emit valid event sequences? betthe
approval sequence induced by the suppression automatonaWe @ 3 = ¢’ and
P(c"). Let ' be an approval sequence such tRat @ ') ands’ <, 3. Using the
definition of the<; ordering, we can find:;, y,3’ € {0,1}* such thats = x;0;y
andps’ = x;1;y' (x may be an empty sequence). Recall that we wrijte] for the

i-length prefix ofe. In this case, let = |z

, the length ofr. The automaton will
have emittedr[..i] @ « after: steps of the automaton running on inputTherefore
the automaton will be in state][..;] ®). Sinces = ;0; y it follows thatw(o[i +
1], (c[4]® z)) = 0 so it must have been the case thd?(s]..i + 1] ® (z;1)).
However, P is a safety property, so by (3.2)7 € T*.—P((o..i + 1] ® (z;1)); 7).
Note thato[..i+ 1] ® (z; 1) is a prefix ofc @ (z; 1;¢/) andf’ = (;1;9') S0-P(0®
A"), which contradicts our assumption abatit So no such?’ can exist and thg

induced by the suppression automaton is minimal. 0

The <, partial order therefore gives us a practical notion of gi@cenforcement;
any property that can be precisely enforced by a suppressitimaton can also be;-
gracefully enforced. Using this notion of enforcement we 8t suppression automata
are more powerful than truncation automata since, as disdus Section 3.1.4, a trun-
cation automaton cannet;-gracefully enforce any policy where dropping mid-seq@enc

events yields a valid event sequence.

3.1.5 Reject-Blind Automata

A suppression automata@, qo, 9, w) is reject-blindif wheneverw(a, g) = 0thend(a, q) =
q. Informally, areject-blindautomaton does not record rejections. A suppression adtoma
ton which is not reject-blind is eeject-observingautomaton.

The suppression automaton constructed in the proof of EBme@ris reject-blind. This
means that we do not need the full class of suppression atdadoma;-gracefully enforce

all safety properties—the class of reject-blind suppmsautomata is sufficient.

39

However, any automaton thag-gracefully enforces a property must by definition pre-
cisely enforce that property. Ligatti et al. showed thagsepsion automaton can only pre-
cisely enforce safety properties. Therefore, the classjett-observing automata cannot
=<;-gracefully enforce any property that cannotkegracefully enforced by a reject-blind
automaton. In some sense, the smaller class of reject-blitmmata is as powerful as the

full class of all suppression automata.

Reject-observable automatee capable of behaviors that cannot reproduced by reject-
blind automata. However, this behavior cannot be obsemdtie output trace of the
automaton, and therefore it cannot be distinguished byebergty automata framework,

which classifies policies by their sets of acceptable ouitpges.

For example, many automated teller machines will disabknklsard (by taking away
the card) if the cardholder cannot type the correct PIN withree attempts. Consider a
suppression automatot,;,,, with a similar policy: block all bad eventsand if there are
threeb’s in a succession then block all further events. This automa easy to encode;
we just increment a counter every time we rejetti@set the counter when we see a hon-
event, and if we seelawith the counter showing two previols we enter a state where
all further events are rejected. This automaton is necéssaject-observing, as we need
to update our state when we rejecb.aHowever, the set of output traces generated by
this automaton is exactly the set of traces allowed by annaatton which simply drops
events without ever disabling the card. For example, ontinput b; b; b; a the automaton
A Will output a; a, which is also the result of simply dropping theevents from the
tracea; b; a; b; b (among other traces). Any sequemncef non+ events is a possible output
of A, Since we get as output if we feed; b; b; b to A,;,,,. Therefore the ATM policy

cannot be expressed using the formal definition of secudligypfrom Section 3.1.1.

40

3.2 Composition

The security automata framework of [41] examines the cdipiabiof a complete mon-
itor automaton which enforces one property. This work dassacldress how multiple
properties or automata should be composed. Schneider{@Pdped composing multiple
truncation automafaby taking a simple conjunction of the automata; when one ef th
automata wants to truncate the target the combined autdnoaizate the target. The re-
sulting property is the conjunction of all the constituerggerties; the combined automata
accept the intersection of all the traces accepted by th&titoent automata.

This ability to enforce a policy as a composition is desieafdr several reasons,
as discussed in Section 1.1. It allows distinct policies ¢odescribed in isolation for
simplicity and clarity. However, conjunction seems to bssleappropriate for suppres-
sion automata than truncation automata, as it is not cle@kihg a conjunction of the
constituentw functions yields the desired result. Consider a propétiyof traces of
T = {a,b,c} which insists that everit can only occur immediately after an An au-
tomatonA,, = (Qu, o, dup, wap) CcOUld enforce such a property by setting, to reject
any b unless it was preceded by an Given the invalid sequenae b; b; c as input, the
automaton would emit the valid sequence: c. Consider another property., which
disallows traces which begin with An automatord_, = (Q-4, ¢}, 0-a, w-4) Could en-
force this property by setting_,, to reject event if it is seen in the initial state. After
the first nona event the automaton moves to a state where all events arptadc&iven
inputa; b; c the automaton will output the sequerice.

What happens when we take the conjunction of these automdtéead it the event
sequence; b; ¢? The automator ,;, will accept the first event since its,, function yields
1, but the automatoA._,, will reject the first event. Taking the conjunction of thdunc-
tions we reject the first event. Automatar), will then accept thé event because, from
its viewpoint, theh occurs after am—the automaton has no mechanism to record the fact

that another automaton has rejected an event. Our compasadaton will eventually

2In [60] the termsecurity automat#s used solely for what Ligatti et al. call truncation autdaaa

41

emit b; ¢ given inputa; b; ¢ even though such an output trace violates prop&ty Un-
like for truncation automata, a conjunction of suppressiotomata does not enforce the

conjunction of the individual properties.

We could construct a suppression automaton covering a nushpeoperties?,, .., P,
by taking the conjunction of all the properties. In other d&yrsetP(c) < A", P,(0)
and construct an automaton manually or using the construdiescribed in the proof of
Theorem 2. However, this is unsatisfactory from an enginggyoint of view; the result-
ing property may be very complex and difficult to encode, dredsuppression automaton
construction algorithm in the proof of Theorem 2 may notgialconcise automaton. A
preferable solution would allow us to run a set of automatpdrallel, as we can with

truncation automata.

As discussed in Section 1.1, there are situations wher@, ievee had some system
to combine suppression automata in a well-behaved comgumatie would want a more
subtle method to combine policies. We may want a policy thataverride other policies;
for example, a policy allowing lifeguards to enter a poolddaoverride a policy barring
swimmers from a pool after business hours. A conjunctiomes$ée two policies will deny

the lifeguard access to the pool.

From this discussion we derive two requirements for a meshafor composing sup-
pression automata: first, automata need to be able to redke tapproval/disapproval
decision to properly update their state, and second, autostuld be able to submit a
variety of possible opinions on whether to accept or rejectuding the option of defer-

ring to or overriding other automata.

Our solution is to extend the definition of a suppressionmaaton to allow it to record
rejections of events by other automata with which it has bmemposed. We extend the
range of thev function so that instead of yielding 1 or 0, it yields an elemia a setD
of votes To avoid confusion, we use : Q x T' — D to refer to this extended version
of w. We add aresolution functionf : 2” — {yes, no, T} which combines the votes

from individual automata into a yes ao or T, indicating approval, rejection or conflict.

42

Finally, we extend the domain of the transition functioso that it includes the approval
or disapproval as a parameter. This model of composableypatiforcement is described

in the next section.

3.3 Encoding Policies

A policy modehlpproves or rejects a transaction request based on thetadrastcs of the
transaction request and the history of previous transaxtidhe model is composed of
separatgolicy automatdhat vote individually as to whether a transaction requiestikl
be approved. The votes are coalesced into an approval @pisal using aesolution

function

3.3.1 Votes and Conflicts

We useD to denote the abstract set of possible votes. Associatdd/Wwis a function
f, which resolves votes intfyes, no, T}, representingccept, rejecandconflict (or er-
ror) respectively. The meanings of accept and reject arelhvéus ones. Aconflict
result signifies that the votes offer conflicting opinionsativhether to accept or reject a
transaction request.

As a simple exampléel) containsyes, no, andmaybe, and f maps a set of votes t@s
if the set containges and does not contaito; to no if it containsno and does not contain
yes; and toT if it contains both ges and ano or only maybe.

For a more complex example, we can model votes with varyirggipes if we setD
to be the set of integers. We interpret integer- 0 as a vote for acceptance while we
interpretn < 0 as a vote to reject. The absolute value of the vote indichteptiority of
the vote, where higher values have higher priority. For gdamf the votes were-5 and
3 then they would be resolved as or reject, since the reject vote has the higher priority.
Any set of votes where the accept and reject votes had the is@xienum absolute value

would yield a conflict. A set with no votes or with only 0 wouldsa yield conflict.

43

Another resolution strategy for the same set of votes woeltbliake the sum of all votes,

with a positive, negative and zero sum yieldirg, no and conflict, respectively.

At times we will treatD and f : 2P — {yes, no, T} as abstract mathematical entities.
We need an actudb and f, however, for the implementation of our framework and to get

a concrete sense of how policy models capture real worlaiesli

We have the following requirements férand:

Expressive: The votes should be rich enough to allow various ways of cambgiand

prioritizing different policies.

Succinct: The votes should succinctly express the policy. They shbaléasy to write
and maintain. The votes of a single policy should not haveetoebwritten when

that policy is composed with a new policy.

Efficient: There should be an efficient algorithm for evaluatfngn a set of votes. This is
especially important in applications for devices with lied computational power.
An efficient algorithm forf will also make analyzing the policy model more feasi-
ble.

Well understood: An ideal system of votes would be based an a system that has bee

studied in the literature previously instead of somethiag tve invent.

For our payment card application we usefeasible logido describe and resolve votes.
As we show in the next section, defeasible logic is rich eldogxpress various ways of
combining votes. It is succinct enough to express tentg@tigéerences without explicitly
ranking votes. At the same time, there is an efficient algorito computef. Finally,
defeasible logic comes off-the-shelf—it was invented m1880s and has been studied as

a purely logical system and as a way to model real-world egguis [55, 56, 48, 47, 8].

44

3.3.2 Defeasible Logic

In this section we introduce defeasible logic, following thresentation of [47]. Readers
who want a more detailed explanation and discussion of tijie ke referred to [56, 47].
Atomic formulas and their negations make up therals of defeasible logic. For
example, from atomic formulas ¢ we get four literalsp, ¢, —p, =q. Thecomplemenof
a literall is written~ [; the complement of an atomic formylas —p and the complement
of a negated atomic formulap is p. In other words, ifp is an atomic formula then
~p = —pand~ (-p) = p.
Defeasible logic has three kindsofles

Strict rules Strict rules are like normal implication:

penguin — —fly
The meaning of this rule is “ipenguin is true therfly is not true”.

Defeasible rules Defeasible rules are like strict rules except that they capreempted

by other information. For example, the rule
bird = fly

says that “ifbird is true then we conclude thAy is true unless we have some reason

to think otherwise”.

Defeater rules Defeater rules are used to block the tentative conclusibref@asible
rules. For example, the rule

injured ~» —fly

will block a rule like bird = fiy since the knowledge that a bird is injured counters
our intuition that birds tend to fly. However, the defeateler(unlike a similar
defeasible rule) does not lead to the conclusigiy; since we have no intuition
about whether injured birds fly or not we do not want to makengata/e conclusion

either way.

45

Each of the rules can have a set of literals on the left hanel isistead of just a single
literal. In such a rule all literals in the set must be truetfa rule to apply. For example,

in the rule

fly, mammal, scary = bat

we tentatively concludéat only if fly, mammal and scary are all true. If a rule has an
empty set of literals on the left hand side then we write tlfieand side as{}”, as in
“{}=q"

The literals on the left hand side of a rule are éimecedentsf the rule. We denote the
antecedents of a ruleas A(r). The literal on right hand side of the rule is tbensequent
of the rule, and we us€(r) to refer to the consequent of a rule

We can assign priorities to rules by giving a partial ordgraf rules. This ordering

determines which rule to apply when two rules conflict. Faraple, if we have two rules

r1: injured = —strong

ry: big = strong

then ifr; < ro we will conclude that an elephant that is big and injuredrisrsy; ruler,
which suggests that such an elephant is not strong, is ddemibyr, sincer, is superior

to r; in the ordering.

Inference in Defeasible Logic

A defeasible logidheoryconsists of a sef’ of facts(literals known to be true), rules,
and a partial order relation on R. Given a theory we can constructlarivationusing
the inference rules for defeasible logic. A derivation iguence? = P(1),..., P(n)
of tagged literals literals annotated with a tag indicating what we have pdosdeout the
literal. In defeasible logic there are two notions of praligband each form of provability
has a positive and negative tag. The four possible taggadlétcorresponding to a literal

[are:

46

e +Al: [has been definitely proved. Informallyhas been proved using strict rules

and facts.

e —Al: [cannot be definitely proved. Informally, we have shown thatl will never

be derived.

e +0l: | is defeasibly provable. Informally,has been proved using both defeasible

and strict rules, in addition to facts.
e —0I: | cannot be defeasible proved. We have shown-tti#twill never be derived.

We use the following notation for various subsetd¥®fa set of rules. The set of strict
rules is denoted byr,. We useR,, for the set of strict and defeasible rulég; for the set
of defeasible rulesiz;; for the set of defeasible and defeater rules, &pgl for the set of
defeater rules. We writ&[q| for the set of rules with consequentThis notation extends
to subsets of? so that, for example?;[g] is the set of defeasible rules with consequent

The derivation sequende = P(1),..., P(n) is constructed incrementally. Each step
in the construction adds one elemét(t + 1) to P based on the elemeniy1),..., P(7)
and one of four inference rules which are described belowh Eae corresponds to one of
the four types of tagged literals described above. We wiite ;) to refer to the sequence
P(1),..., P(i).

The first two inference rules deal with definite provabilityhis is provability in the
classical monotonic sense. We make conclusions based orsafamplication without

worrying if some other chain of implication contradicts @anclusion.

Rule +A: We can append®(i + 1) = +Ag if either
qe For
Ir € R[q]. Va € A(r). + Aa € P(1..4)

We can mark a litera} as definitely provable if it is a fact or it can be proved usirggract

rule where the antecedents of the rule are all definitelyaivte:

a7

For example, if our theory has one facand one rules — b (where both: andb are
atomic formulas) then we can apply rule Redé\ once for the first step of the derivation
P(1) = +Aa (sincea is in F) and once again for the second sféf2) = +Ab since there
exists a strict rule implying with all antecedents (that ig) tagged as definitely provable.

The rule for marking a literal as impossible to prove defigiteas a similar structure

to the previous inference rule:

Rule —A: We can appen®(i + 1) = —Agq if
qg ¢ Fand
Vr € Rglq]. Ja € A(r). — Aa € P(1..9)

We can mark a literaj as definitely unprovable if it is not a fact and all the rulestttan
strictly concludey are disabled because they depend on literals which canrusflyately
proved.

For example, if our theory has no facts and one aHe b then we can apply Rule A
to get derivation stef’(1) = —Aa becauser,[a] is empty (no rules imply:), and then
we can apply the rule again to get ste2) = —Ab since the only rule ilR;[b] isa — b
which has an antecedemivhich has been shown to be impossible to definitely prove.

The next two inference rules deal with defeasible provabilor which we must con-

sider competing chains of implication.

Rule +0: We can appen®(: + 1) = +0q if either
(1)+Aq € P(1..i) or
(2) (2.1)3r € Ruylq).Va € A(r). +da € P(1..i) and
(2.2)—A ~ g€ P(1..i) and
(2.3)Vs € R[~ q] either
(2.3.1)Ja € A(s). — Oa € P(1..q) or
(2.3.2)3t € R.4[q] such that
Va € A(t). +da € P(1..i) andt > s

48

If a literal ¢ is definitely provable then it is defeasibly provable; ifuda (1) is true then
we can apply Rule-0. Otherwise, we need to show (2) that there is rule which iegpli
g which is not overruled by a competing rule. Clause (2.1) ezssthat the rule implies
g and its antecedents are defeasibly provable. (2.2) cheaeks-tq, the complement of
¢, has been shown to be unprovable. (2.3) checks that anymylying ~ ¢ is either
inapplicable because they depend on antecedents thattgweonable (2.3.1) or they are
overridden by a rule implying that has a higher priority in the ordering of rules (2.3.2).

Consider a theory with one fadijrd, and one rule-;, : bird = flies. We can apply
inference rule+A to get P(1) = +Abird (since bird is a fact). We can then apply
inference rulet-0 for bird since clause (1) above applies, yieldiRg2) = +0bird. We
can apply inference rule A to getP(3) = —A-flies since there are no rules implying
—flies. Finally, we can apply inference ruled again forflies to getP(4) = +0flies since
clause (2) applies: there is a defeasible rule implyiig with all antecedents marked as
defeasibly provable (2.1), and we have shown thydics cannot be definitely proved, and
there are no rules implyingfiies (2.3). Note that we have shown thies is defeasibly
provable without showing it to be definitely provable. Intfatis impossible to generate
a derivation for+-Aflies in this theory.

Consider the same theory above with an additional#agtred and an additional rule
r9 @ injured ~ —flies with no ordering o, r,. We can take the same inference steps de-
scribed in the preceding paragraph except for the last bigpat step, clause (2.3.1) does
not hold because there is a rulec R[—flies| whose antecedent is not tagged as impossi-
ble to prove defeasibly. In fact, adding this additional faed rule makes it impossible to
have a derivation containingdfiies.

The rule for marking a litera} as impossible to defeasibly prove is similar in structure

to the preceding rule:

Rule —0: We can append(i + 1) = —0q if
(1) —Aq € P(1..4) and
(2) (2.1)Vr € Rylg).3a € A(r). — 0a € P(1..i) or

49

(2.2)+A ~qe P(1..i) or
(2.3)3ds € R[~ ¢| such that
(2.3.1)Va € A(s). + da € P(1..7) and
(2.3.2)Vt € R4lq] either
Jda € A(t). —0a € P(l.i)ort # s

In order to markg as not defeasibly provable we need to check that it is not itifm
provable (1) and that defeasible implications are impdeg®). Showing that defeasible
implications are impossible requires us to show that (211ukes implyingq are blocked
because one of their antecedents is not provable, or (2aR}hk complement of has
been shown to be definitely provable, or (2.3) that there id@athat implies~ ¢ that is

enabled (2.3.1) and is not overruled by a competing rule avitigher priority (2.3.2).

Consider a theory with no facts and one rble> a. We can apply inference ruleA

to getP(1) = —Ab since there are no strict rules implyih@ndb is not a fact. Similarly,
we can apply the same inference rule to get the derivatign/3t{2) = —Aa since there
are no strict rules implying (the ruleb = a is defeasible, not strict). We can then apply
the inference rule-0 for the literalb because clause (1) holds foand clause (2.1) holds
since the sefR,,[b] is empty. This gives u$(3) = —db. Once we have showito be
impossible to prove defeasibly we can apply the inferente-+d again, this time for the
literal a. The derivation step’(2) gives us clause (1) and whil,,[a] is not empty since

it contains the rulé = a, the antecederitin the rule has been tagged as impossible to

prove defeasibly, so (2.1) holds.

We say that a tagged literal is a conclusionof a theory(F, R, >) if we can apply
the inference rules described above to yield a derivatioera/R(:) = ¢/ for somei. We
denote this asF, R, >) + tl.

50

3.3.3 Defeasible Logic as a Voting Mechanism

In our framework, policies vote by giving rules that reasdrowt a special literajes
which stands for “approve the transaction request”. Moeeigely, there is a set of atomic
formulasAF which is fixed for an application. The atomic formuyks is one element of
AF. LetR be the set all rules (strict, defeasible and defeater) madements ofA F'.
The setD of votes is the set of finite subsets®f In other words, every voté € D is a
list of zero or more rules. All the votes are combined by tgkime union of all the sets of
rules.

For our voting mechanism we sEit the set of facts, to be empty. To state that a literal
is true we can include a rule with an empty set of anteceddfts.example{} — a
will imply that « is provable, essentially making a fact. We also assume that the
order on rules is trivial, in the sense that no rule is gretitan any other rule. These
restrictions simplify the voting mechanism and they aldoule optimize the inference
algorithm—for example, clause (2.3.2) in inference rule$ and —0 becomes trivial.
We have found that even with the restrictions mentioned atbg voting mechanism is
expressive enough to encode the policies we want to encli@str@ flexibility is needed
it would be fairly simple to extend the formal framework ameplementation to handle
facts and rule orderings.) With these restrictions the algfde logic theory is entirely
determined by the séf of votes (which gives a set of rules), so we wrife- ¢/ to state
that a theory made from votésyields conclusiori.

The resolution functiorf on argument’ C D is defined as follows:
o f(V)=yesif VI +0yes andV I/ +-0-yes.

o f(V)=noif V I/ +0yes.

o f(V)=Tif VI +0yesandV F +0-yes.

Note that it is possible for boties and —yes to be defeasibly provable in defeasible

logic.

51

Consider the following three votes:

vy . {} = p;qg=yes
Vo: PpP—4q

vy {} — —yes

Evaluatingf on these votes gives y§{v;, v2,v3}) = no sincewvs concludes (without
preconditions) thages is not defeasibly provable. However, if we only consider fihst
two votes thery ({v1, v2}) = yes since the); allows us to tentatively concluge v, allows

us to conclude (givenp), and the second rule of allows us to concludges giveng.

3.3.4 Other Voting Mechanisms

The primary voting mechanism we investigate in this workhis tlefeasible logic voting
mechanism described in the previous section. However|ltmtiation and comparison
we will occasionally employ other voting mechanisms. Wecdés four different mech-

anisms in this section.

Definition: In the binary voting mechanisitine set of voted, is just{true, false}, indi-
cating approval and disapproval respectively. The votimcfion simple takes the con-

junction of all the votesf, (V') = yes if A,cy v, otherwisefs(V') = no. O

Note that conflicts are impossible in this voting mechanighre binary voting mechanism
is very simple, and is essentially the same as using congumtd compose suppression

automata as discussed in Section 3.2.

Definition: The3-valued logic voting mechanidmas a set of voteB; = {true, false, 1 },
wheretrue indicates approvakalse indicates rejection, and indicates that we have no

preference. The resolution functighis evaluated on votels C D5 as follows

o f3(V) =yesif true € V andfalse ¢ V.

52

o f3(V) =noif false € V andtrue ¢ V.

o f3(V) =T if true,false € V ortrue, false ¢ V.

The next voting mechanism resembles the majority votingodifipal elections.

Definition: In theelection voting mechanisthe set of vote®. is {true;, false;, 1;}, the
values of three valued logic tagged with unique idenfifiand the resolution function
fe(V') returnsyes if the true votes outnumber thfalse votes,no if the false votes outnum-

ber thetrue votes, andr if the thetrue andfalse votes are equally numerous. O

Our next voting mechanism is a generalization of the 3-whlagic mechanism where

we can annotaterue andfalse with priority levels.

Definition: Theprioritized logic voting mechanisimas a set of votes
D, = {L} U {true, false} x {1,2,...}

A vote of L indicates no preference, a vote(ofue, n) is a vote to approve with priority,
and a vote offalse, n) is a vote to reject with priority:.. If a vote (true, n) conflicts with
a vote(false, n’) then the vote with the higher priority takes precedence. eMormally,
we define a functiomri wherepri(L) = 0 andpri(b, n) = n. Letmax(V) C V C D, be

the set of votes with the maximal priority. In other wordsyx(V) = {v e V.u e V =
pri(v) > pri(u)}.

o f,(V) =yesif max(V) = {(true, n)} for somen.

o f,(V) =noif max(V') = {(false,n)} for somen.

o [,(V)=TIif V=0ormax(V)={L}ormax(V) = {(false, n), (true,n)}.

i

3We tag the votes so that when we take the union of all votes tagr@formation about the number of
votes fortrue, false and L.

53

We will refer to the components of the defeasible logic vgtmechanism as simply
D andf. Other voting mechanisms will be identified with a subscrips and f5, andD,,

andf,, etc.

3.3.5 Policy Models

Let 7" be the set of all transaction requests for a particular egftin domain. For ex-
ample, in an e-commerce application we might havee a set of integer-string pairs that

represent the price and the seller of the transaction réquetsD be a set of votes.
Definition: A policy automatorP is a tuple(@, qo, v, 0). The components aP are
() A set ofstates
qo An initial state

~ Thevoting functiorof P. v is a function
v:QxXT —D

which determines how the policy automaton votes in a givatesb process a given

transaction.

¢ Thetransition function
d:Q xT x{yes,no} — Q

which governs how the policy automaton updates its statenalieansaction request

has been approved or disapproved. [

Note that the transition functiof is not defined for votes in which the resolution
function returnsT; as we see below, if the resolution function yieldshe set of automata
enters a special error state.

As we discuss in the Chapter 4, in practice the policy automéat specified using a

graphical language. We split the automaton state imbolegsimilar to control points in

54

a program) andariables The modes are expressed as vertices in our graphical lgagua
The edges are annotated by guards and assignments thaorfewariables and transac-

tion parameters, and specify the transition functiomhe modes are annotated with vote
statements that refer to the current state and the traneguéirameters, and specify the

function-y.

Definition: A policy models a triple (1, D, f) wherell is a finite set of policy automata,
D is the set of votes, ang is aresolution functiorthat maps a set of elements bfto

{yes,no, T}. O

SinceD and f are usually, respectively, the subsets of the set of ddfledsigic rules
and the function defined in Section 3.3.3, we will sometimesflate a policy model
(I, D, f) and the underlying sdi of policy automata. For example, when we write a
modelM = M'U {P} we meanV] = (IIU{P}, D, f) whereM’ = (11, D, f).

Consider the following payment card policy: “Allow at mosteopurchase over $100.
All purchases< $100 are allowed unless a purchase is madexd$200, after which no
purchases will be allowed at any price.” Assume transastiaonsist of a single value
representing the price (for example= 25). A policy automaton that implements this
policy could be described as follows. We @t= {qo, ¢1, ¢}, where state, is the initial
state where we have seen no purchases over $1@0the state after one purchase of over
$100, andy, is the state after one purchase of over $200. The funetioraps states to

votes as follows:

(90,1) = dyes, V1
(q1,t) — dyes, ¥t <100
(q1,) +— dpo, Yt > 100
(q2,t) > dno, Vt

whered,. is a single defeasible logic rulg} — yes) which forces the literayes to be

provable (that is, forces the request to be acceptedyland the opposite rulé{} —

55

—yes) that forces a rejection. The functiorupdates state as follows:

(qo,t,yes) +— ¢ for200 >t > 100
(q,t,yes) — qo fort >200,Vq € Q

(q,t,—) +— q otherwise

where the -’ in the last line indicates that the mapping applies whethamsaction re-
guest was approved or not. In the initial stgfall purchases are approved. The transition
function switches states frop to ¢; when a purchase af 100 is made, thereby disal-
lowing further purchases 100. If the purchase i$> 200 then the transition switches to

stateqg,, thereby preventing any future purchases.

3.3.6 Semantics

Consider a policy mod€lll, D, f), wherell = {P;, ..., P.}. LetQ; be the set of states
of each policy automato®;. The state of the policy model at any point in time can be
described by a vectdy, - . ., gx), where eacly; € @;. Initially, each policy automaton
starts in its initial state. We proceed to describe how @atiens are processed and states
are updated.

Suppose the current state of the policy modélis. . . ¢,) and the current transaction

requestig. For each policy automatah, its vote isd; = R(g;,t). We then evaluatg(d),

whered = {d;,...d,}, and interpret the outcome as follows:
yes the transaction request is approved.

no the transaction request is rejected.

T there is a conflict between two or more policies.

One desirable property for a policy model is that if vofemre produced by the individual

policies thenf(d) = yes or no—in other words, policies do not conflict with each other

when composed.

56

Once a transaction request is approved or rejected eacty paltomaton updates
its state. Intuitively, a policy automaton always has twagble transitions that it can
follow—one to record approvals and another to record rigjast If a policy automaton
is in stateg and a transaction requesds approved then the state is updated (i@ ¢, yes).
Similarly, if the transaction requests rejected, the state will be updated todge, ¢, no).

This update extends in the natural way to states of a policyahd-or a statéy, . . . gx)
of the policy model and a transactionetd; = R(qg;,t) be the vote the policy automaton

P, supplies, and let = f({dy,...d}). If a = yes ora = no, then we write

tTa

(@1, @) = (q1,---41)

whereq, = 6(g;,t,a) gives the updated state of the automatonIf « = T then there
is a conflict between policies and the policy model moves aBpecial error stater,

essentially terminating the operation of all the autom¥fa.denote this case by

T
(qla"'7QR) g qTt

Once the policy model enters the error state it responds taakaction requests with,
indicating an error:

VteT, qr i_—l; qr.

The update relation is now generalized to a sequence ofatios requests. Given a

sequence of transaction requests t4, ..., t,, we write

TTaa =

g = (.

if there exist model states, . .., ¢, 1, anda = a; . . .a, such that

_,tlTal — tQT(Iz tnflTanfl — tnTan _;

G = = G =g

Given a policy modeH and a sequenceof transaction requests we sdyemitsa on

7 if for the initial stateg; of the model, there exists sonesuch that

- Tla

dgo — ¢

57

When itis not clear which policy model we are referring to wit subscript the update
notation with the model. For example, for policy modélwe will write ¢ %M ¢ and

TTa /
q=—=M ¢q-

3.4 Properties of Policy Automata

In this section we define and investigate some interestiogepties of policy automata.

3.4.1 Conflicts

A policy model with initial statey, is conflict-freeif for all sequences of transaction
requestsgy == ¢ impliesq’ # g¢+. Itis easy to see that a conflict-free model will never
emit T in response to a transaction request. Typically a developlerant to ensure that
her policy model is conflict-free before deploying it.

A simple example of a conflict with the defeasible logic vgtimechanism is a com-

bination of two votes
o v : {} — —yes
o uy: {} — yes

Both yes and —yes are asserted to be true, which makes both literals provédneing
a conflict. This conflict can be avoided if one of the automadteis to the other; for
example, vote, could be changed to{} = —yes”, which only assertges if other votes

do not contradict the vote.

3.4.2 Redundancy

Intuitively, a redundant policy automaton is one which haseffect on the responses to

transaction requests.

58

Definition: Given a policy modelM = (II, D, f) wherell = {P;,..., P}, policy au-
tomatonP is redundant in) if for all sequences of transaction requestd/ emitsa on

7 if and only if the policy mode(II U { P}, D, f) emitsa on . O

In some circumstances having a redundant policy automatynba undesirable—it
may be an indication that a policy is being overridden by offwdicies. At the very least,
it indicates that a simpler, smaller model could be used tthdsame job. If a device has
a limited amount of memory in which to store programs then\elbper would want to
avoid installing redundant policy automata.

The definition of redundancy above only applies to a policioauaton’s behavior
when combined with a given set of automata. However, in asdn where a policy
developer expects additional policies to be installed @nctird this redundancy may not
be appropriate. Consider a policy automatdmhich has a single vote, which is always
enabled for all transaction requests, of the farm> yes. This vote forces an accept when
the literala is true. If this policy is combined with a policy mod&f with no automata
with votes concluding: (that is, no votes with implication rules withon the right hand
side of the rule) then the implicatian — yes will never be triggered, so this vote will
never affect the approval of a transaction request. Obliypisis redundant inV/. We
then add a policy®, which has a vote of the forfi} — a, which asserts that is true,
to M to make)M’. The vote ofP will be activated since: is now true, soP will now
affect what gets emitted by the automaton. In other woRlg redundant in\/ but not
M'" = MU{P,}. We can strengthen the notion of redundancy so that a psli®dundant

no matter what policies are installed in the future.
Definition: Given a policy modelM = (II, D, f) wherell = {P,,..., P}, policy au-
tomatonP is strongly redundant inV/ if for all finite sets¥ of policy automata, and for

all sequences of transaction requestd/’ = (ITU ¥, D, f) emitsa on 7 if and only if

M = (IIU{P}UW,D, f) emitsaonr. 0

It is easy to see that strong redundancy implies redundangyis strongly redundant

in A then itis redundant foA U W whereV is the empty set. The converse is not true, as

59

we showed in the example above whétevas inactive untilP, was added to the model.

What kind of policies are strongly redundant? If a policyamaton has only empty
votes—votes which consist of zero defeasible logic ruldsertit will not ever affect the
inference algorithm, so it will be redundant in all modelsd éherefore strongly redundant
in all models. If a policy automatof only contributes redundant votes to a model—in
other words, wheneve? gives votev there is an automaton in the model giving the same
vote v—then P will never affect the outcome of the inference algorithnglsa P will be
strongly redundant in that model.

More generally, we define @dundancy orderingo be a partial order of D such
that

d=d =YV cD.f(Vvu{dd}) = f(Vu{d}) (3.3)

If an automatonP’s voted is always dominated in th& ordering by one of the votes in

an automaton in a policy modé¥, thenP is strongly redundant ifi/.

Example 3 If we choose the set of prioritized logic votgs,, f,,) for our voting mecha-
nism, we can order votes according to their priorities=<,, u < pri(v) < pri(u). Since
f» ignores any votes that have less than maximal priority, ®jiprdering satisfies 3.3. So
if an automaton? always supplies a votethat is of lower priority than a vote contributed

by an automaton in a model/, thenP is strongly redundant ird/.

A similar ordering exists for our defeasible logic voting chanism. Intuitively, an
implication ruleay, as, a3 — ¢ is redundant if there is already a rule a; — ¢ present;
whenever the first rule is triggered the second rule will @sdriggered, so if the first rule
is dropped the conclusions that can be inferred from thesnwi# not change. A careful
case by case analysis of the defeasible logic inferenceitdgoconfirms this intuition:
if a defeasible logic theory contains rules: aq,..,a, > candry : ay,..,a; > ¢ where
i < n andr is one of—, =, ~», then we can drop, without changing the tagged literals
that can be derived from the rules. This gives us a partiarood votes satisfying (3.3).

Recall that we usel(r) to denote the antecedents of the ruland C'(r) to denote the

60

consequent of the ruke We get the following order:
v=,ueVrev.dseu. C(s) =C(r) NA(s) C A(r)

A policy automatonP that always submits votes that are smaller, usingtherdering,
than one or more votes from the automata in a maddeak therefore strongly redundant
in M.

3.4.3 Refinement

Refinement is a concept that has been studied in the contéxtnoél models of compu-
tation. Informally, a program (or an agent, or a module,)etcrefinesy’ if it is safe to
replacep’ with p. It is often the case that a refinement relation can make anognalysis
easier; we can check a simple program and infer that a morg@leamefinement of the
simple program behaves similarly.

One natural definition of refinement in the context of evegusaces is to use a subset
relation as the refinement relation; if a suppression automa emits a set of event
sequence then a suppression automatdhwhich enforces:’ C ¥ can safely replace
A since anything thatd disallows will be disallowed byA’. For truncation automata
there is a natural correspondence between refinement angosdion. If a truncation
automatonA,; precisely enforces a policy which admits a Sgtof traces, and another
truncation automator, precisely enforces a policy that allows the Sgtof traces, then
composing the two automata yields an automaton which allows Y,. A composition
of automata is therefore a refinement of each of the constitugtomata. This suggests

the following refinement relation:

Definition: A policy model (or suppression automatah)) with output traces:,, is a
sequence refinemeat a policy modelN with output tracesy if and only if ,;, C Xy.

We write this as\/ <, N. O

As noted above, if we compose two truncation autoragtand A, to make a trunca-

tion automatoms, thenA; <, A; andA; <, A,.

61

This correspondence between composition and intersedtiea not hold for policy
automata in general; a counter-example is described bélowever, if we use the binary
voting mechanisniDs, f»), where votes are eitherue or false and votes are resolved by
taking the conjunction of all votes, then composition daasespond to intersection if the
policy automata are reject-blind.

We defined reject-blindness for suppression automata iidpe®. 1.5. We extend the
definition for policy automata and policy models in the natunanner: a reject-blind
policy automaton is a policy automatdty, qo, v,) whered(q,t,no) = ¢ for all ¢ €
Q,t € T. Informally, a reject-blind automaton does not record $eartion requests which
are rejected. It is simple to see that a policy model that isstracted from reject-blind
policy automata will be a reject-blind suppression aut@mat

If a policy modelM; allows output sequencé$, C T and policy modelV/, allows
output sequences, C 7' then, assuming both models use thg, f,) voting mechanism,
if we compose the models by taking the union of their policipenata then the composed
policy modelM; will only allow output sequences B, N X5, soM3 <, M; and M3 <;
M.

However, if we allow automata which can update state aftectimg a transaction
request then the composition of two policy models may allowpat events which are not

allowed by one of the models in isolation. The following exaenllustrates such a case.

Example 4 Let T = {a,b,c}. A policy automaton?, = (Q1, Gini1,71,91) that only
accepts sequences of the fainb; ¢; a; b; ¢; a; . . . could be encoded with three states,—
Qi1), @ @Ndg., With ¢; indicating that only transaction requestvill be accepted. When
reading inputa; b; c; a; b; c; a; . . . the automaton will move from from — ¢, — g. — qq
and so on. We can set the transition functigrso that this state update happens even
if the transaction request is rejected by another automatiote thatP; is not reject-
blind since it switches states even when a transaction qseejected. In isolation, the
automatonP; will only accept traces of the form b; ¢; a; b; c; a; . . .

Consider another automataf, which accepts all transaction until onetransaction

62

request has been approved. After this poift,acceptsa’s and b’s but notc’s. If we
composeP; and P, by combining them in a policy model the resulting model vetéve
as follows on the input sequeneg; c; a; b; c; a. The automator?, will vote to reject the
second: transaction request, whil&; will vote to accept all the events (sinég updates
its state whether or not the event was rejected’y The resulting output sequence will

bea; b; ¢; a; b; a, which is not an output sequence admitted®yyn isolation.

This example shows how even a simple voting mechanism cduwyite automata that
record rejections can lead to behavior where composingraateodoes not lead to a se-
guence refinement of the individual policy automata. Thtahg refinement relation,
priority refinement, attempts to capture the sense that & mpecific or precise policy
automaton is safe replacement for a less specific policynaatian. Intuitively, a pol-
icy model N refinesM if N’s decision differs from\/ only whenN’s decision is more

definite (or has a higher priority) thaW’s decision.

Definition: Priority refinement:Let C' be a partially ordered set. We will call this set the
consolidated vote seWe order sequences @1 by individually comparing the elements
of the of the stream; given sequenees ¢, ¢y, ... ands’ = ¢}, c,, ..., we says < s’ only

if ¢; < ¢ for alli.

Let g be a function from subsets @b (the set of votes) t@'. Given a transaction
request sequeneeand a policy modeM, lets(M, o) be the sequencg, c,, . . . generated
by taking lettinge; = g(d;) whered; are the votes that/ yields on the-th transaction of
o.If ¢ < ¢ for ¢, d € C then intuitively the decision that yieldeds more definite than,
or outranks, the decision that yielded

We say a policy mode is apriority refinemenof M if for all requests sequences
s(N,o) > s(M, o). Note that priority refinement depends onC andg. If we assume a

fixed D, C' andg we write this asV <, M. O

Example 5 If we are using the prioritized logic voting mechanigm,, f,) then we can
setC' to be the set of non-negative integers aitl’) to be the maximal priority of all the

votes inV’ C D,,.

63

The definition of stream refinement is partly unsatisfactoegause it relies on the
internal details of the implementation since it is based daration g which gives the
importance of a particular decision. It also seems to be toodirelation. Let\/ be a
policy model that only accepts the first three transactignests. LetfV be a policy model
that only accepts the first three transaction requests teatraler $50. TheiV <, M but
we can desigi/ and N so thatV £, M.

3.5 Analysis

The formal definition of policy automata and their propestiggves us the ability to for-

mally check policy automata for those properties.

3.5.1 Detecting Conflicts

If a policy model has a finite number of states we can use a caatses on-the-fly reach-
ability analysis to look for states where conflicts occundhe of the reachable states will
emit T on any transaction request then we know that our model isicofriée. (If our
policy model has an infinite number of states then we can ntekaumber of states finite
by using abstraction.)

Checking a given state for conflicts involves evaluatingrésolution functionf on
all possible combinations of votes in that state. Compufirgan be done efficiently as
[56] gives an algorithm for finding the consequences of aatgfde theory in time that is
polynomial with respect to the number of literals and defdadogic rules, and [47] gives

a linear time algorithm.

3.5.2 Redundancy

We may also want to check that a policy automatéms redundant in a policy model
M = (I, D, f). Recall that a policy automaton is redundant in a policy nhddelding

it to the model does not change which transactions are apgrorvrejected. Lefl’ =

64

(ITu{P}, D, f) be the modelM augmented with automatadn. For a given policy model
stateq’ of M’ let d, ; be the vote thal’ gives when processing transactiom stateq’,
and letV,, ; be the set of votes supplied by the automatH.ifThe policy automator® is

redundant ay’ if
VEeT, f(VgrU{dyst) = f(Vyu) (3.4)

Claim 6 P isredundantinM if and only if it is redundant at each reachable model state
in M'.

Proof: <. We prove the if direction by induction on the length of ingeguences.
Recall that states in a policy model wittpolicy automata aré-tuples of the states of the
constituent policy automata. We use the notatigiiq’) to denote the projection of the
k + 1-tuple ¢’ state of M’ to ak-tuple ¢ state of M/ where we ignore the state of the
policy automaton.

Assuming (3.4) holds for all reachable states\if, our induction hypothesis with

being the index of induction is
n TTa . . TTa
V7 € T", gy = ¢, implies 3gn. go ==ur @ A ¢n = 7p(q;,)
whereq, is the initial state of\/ andgj is the initial state of\/’.

e Case n = 1. The input sequence= t for somet € T'. The initial statey, of M’ is
ak + 1-tuple of thek + 1 initial states of the policy automata if’. By definition,
we get the initial state of/ by projecting out the initial state d? to get ak-tuple.
The votes submitted by/’s automata depend only on the automata’s states and
the transaction submitted. Since each\6§ policy automata’s state is the same in
¢o andq(, givent as input the automata it/ will all submit the same vote¥ in
M and M'. Let d be the vote submitted b¥ in this initial state. From (3.4) we
know thatf (V') = f(V U {d}) so both automata emit the same response. A policy

automaton’s update functiahdepends only on the current state of the automata,

65

the current transaction request, and the response ensittéde next state aftey in
M must be the same as the projection of the next state if/’. So the induction

hypothesis holds forn = 1.

e Case n > 1. A similar argument applies in this case. Givenran- 1 length
sequencer, the induction hypothesis tells us that after reading/ will be in a
stateg,,_; that is arp projection of the statg/, , of M’, and that both models have
emitted the same sequence of responsest hetthe next transaction request. The
votes submitted by/’s automata will be the same in both models, and (3.4) shows
that P's vote does not affect the resolution function. Therefahe update will
proceed identically foiV/’s automata in both models, and the next statd/oWwill

be arp projection of the next state aff’.

By induction, (3.4) therefore implies that for any finite ¢gh input sequence both policy
models will emit the same response sequence.

=-. To show the only if direction we assume tlfais redundant but there is a reachable
state of¢’ of M’ and a transaction request 7' such that (3.4) does not hold. Singe
is reachable there must be some input sequenaad response sequenaesuch that
4% T:Ta>;w ¢'. Assume without loss of generality thais the shortest such input sequence.
Since no shorter input sequence leads to a state which e$0{at4), using the inductive
argument used above for the if direction of this proof we daowsthat after reading
the model)M will be in a stateg that is arp projection of¢’, and that both models will
have emitted the same sequence of responses as outputfoféehe policy automata
of M will submit the same vote®’ as they do inM/’. SinceP is redundant inV/, both
M and M’ must emit the same output sequence on input In particular, they emit the
same response arin states; andq’. Thereforef (V') = f(V U {d}) whered is the vote
contributed byP in M’ in stateq’ with input¢. However, this contradicts our choice iof
andq’, showing that no suchandq’ exist. This proves this direction of the only if, and so

we have proved the claim. O

66

We can therefore check for redundancy by finding all reachaibdel states of the
larger modelV/” and verifying that each state satisfies equation (3.4). saudised above,

evaluatingf for all transactions can be done efficiently.

This technique for checking redundancy can be leveragedltdate a policy. Sup-
pose a complex set of policy automdta . . ., P, is supposed to exclude a certain class of
transaction request sequences. For example, we want aay pubdel to exclude reject
a transactions after three consecutivevents. We can write a simple policy automaton
P’ that rejects that class, then check to see if it is redundaht.i. . ., B,. If P’ is redun-
dant then we know tha®, . . ., P, will reject that trace. If the class of sequences is large
or infinite, as is the case in our example, then this technigilebe faster than check-
ing undesired sequences one by one. The autom@taherefore functions as a patrtial

specification of the desired policy model.

We can check fo® being strongly redundant it/ by checking a stronger condition

on all reachable states 81’ = M U {P}:
Vte T,YV' C D, f(Vy,U{dy, JUV") = f(Vy, UV (3.5)

Verifying (3.5) is not as straightforward as verifying (B.#hich just required two evalu-
ations of the resolution function. However, as discussegbiction 3.4.2, there are special
cases where checking that a vote is redundant is simple. aon@e, if there is a vote

d € Vg, such thatd, , <, d (recall that a=, orders votes by comparing the sets of the
antecedents of the defeasible logic rules) then thedjptecan be ignored. If such@can

be found for allt € T and reachable’ then equation (3.5) will hold.

3.6 EXxpressiveness

In this section we give some sense of how expressive theypalitomata formalism is in

a formal sense. In Chapter 4 we examine expressivenessss folenal sense.

67

3.6.1 Translating to Classical Automata

In this subsection we discuss the expressiveness of theypalitomata framework by
comparing it to a classical automata formalism.

Mealy machines [30] are a form of finite automata which givgpatinstead of merely
accepting or rejecting. A Mealy machine is a six-tuple= (Q, T, A, §, A, qo) whereQ) is
the finite set of states witly, € @ the initial statel" is the set of input events) is the set
of possible output events,: Q x T — (describes how the machine updates state, and
A Q x T — Alis the function which determines what gets written as outf@urt input
ay; as; ..; a,, if the machine goes through statgsq, .., ¢,,, the output of the machine will
beX(qo, a1); AM(q1,a2); . M @n—1, an).

If we setA to be{0, 1} then a Mealy machine essentially becomes a finite state sup-
pression automaton, except that it outputs its approvasaecinstead of copying or sup-
pressing an input event. Given a Mealy machine with- {0, 1}, itis easy to transform it
into a finite state suppression automaton by taking the esgmuence of O’'s and 1's and
composing it with the input sequence using theperator defined in Section 3.1.4.

A fixed conflict-free policy modelM, = (II, D, f) with a finite number of states
(where ‘fixed’ means that no more policies will be added tortiealel) can be translated
to a Mealy machinéZ,,, = (Qmn, T, A, Oy Ay Gmo) 1N @ Straightforward manner. Let
II = {P,.., P,} be the policy automata making up the model. We/set {0,1}. The
state set),, is setto); x --- x @, where(Q); is the state set of the corresponding policy
automaton?;. In other words,\,, has the same set of states as the policy madgl
The initial stateg,,(is the initial state of the policy model. We seand\ to match the
transition of policy model: ify a1z ¢ in the policy model (where is eitheryes or no)
thend,,(q,a) = ¢ and \,,(¢,a) = 1 or O, forz = yes or no, respectively. Note that
determining that the policy model in stajegiven inputa will emit x and transition to
stateq’ can be precomputed if we fix the set of policy automata; eveticyautomaton
has a finite amount of votes it may submit, so there are onlyit frumber of possible

vote combinations, and therefore only a finite number of @rgputs that will be given to

68

the resolution functiorf, which is deterministic. Informally, if we only need to caoder a
finite set of defeasible logic votes we can pre-compute & tatalpping each possible vote
combination to the corresponding output of the resolutideing this table in combina-
tion with the policy automata’s transition functions weetetine how the Mealy machine
should respond to a given transaction request in a givee. stat

Instead of translating to a single Mealy machine, we cangovesthe modularity of
the policy model by translating to a set of communicating M@&aachines. We can cre-
ate a Mealy machine for each policy automaton where eachyMeathine’s\ function
specifies the policy automaton’s vote on a particular tretisa request, and these votes
are then read by a manager Mealy machine, which in turn cgitpetresult of the resolu-
tion function f, which is in turn read by the Mealy machines correspondirtipeégoolicy
automata so that they can update their state accordinglg. phtased update proceeds as

follows:

1. The Mealy machines corresponding to policy automatatieadurrent input trans-

action request and output a vote.

2. The manager Mealy machine reads all the current votes atpdits a O or 1, indi-

cating whether the transaction should be rejected or apgrtov

3. The Mealy machines corresponding to policy automata tlead or 1 and update

their state accordingly.

The Mealy machines corresponding to policy automata arstoasted in a straightfor-
ward way. The manager Mealy machine can be encoded as a faiteasitomaton be-
cause, since we have fixed the policy automata, there areaditiite number of possible
votes. The manager machine only needs to look up the resthieafesolution function
using a table like the one described in the previous paragrap

A similar translation will not work if we want our policy mot& accept arbitrary
policy automata that have been translated to compatibldyMeachines—even if each

policy automaton has a finite number of states. Judging veneth-Oyes can be inferred

69

set of defeasible logic rules is at least as hard as the gegathability problem (we can
represent the graph using literals for vertices and stuietsrfor edges), which is a non-
deterministic log space complete problem. Therefore a gemislealy machine cannot
resolve arbitrary votes using a finite number of states.

We can construct Mealy machines that resolve votes in the bifaxy f,) and three
valued logic(Ds, f3) voting mechanisms. The election voting mechanigm f.) and the
prioritized voting mechanisrtD,, f,) cannot be resolved using a Mealy machine because

each mechanism requires a resolver to store arbitrarigelaumbers.

3.6.2 What the Model Cannot Express

The policy model formalism is restricted in a number of intpat ways. A policy model

can only reason about the information available in the @atign requests—if a transac-
tion request fails to identify the merchant involved themlqy about merchants cannot be
enforced by the policy model. This section discusses soher dindamental restrictions

on what the model cannot express or enforce.

Limits on Enforceable Policies

As discussed in Section 3.1, if we consider security pdit¢ebe predicates over sets
of transaction sequences then a run-time monitor like apatiodel can enforce a strict
subset of security policies. A run-time monitor can onlyrakae a single trace at a time,
and only the prefix of the trace that has already taken plabes makes certain policies
impossible to enforce. In [60] Schneider identifies a cldgsbcies calledoroperties for
which validity solely depends on a single transaction segeieand a subclass of proper-
ties calledsafety propertieswhich are properties which in which every prefix of a valid
transaction sequence must also be valid. As discussed tio8&cl.4, safety properties
are the class of policies which can be enforced by suppmeasimmata, which encompass
policy models. This excludes potentially useful policiés ithe following, some of which

were discussed earlier:

70

e Anti-bribery policy : Purchases should not depend on previous payments to the
cardholder. For example, paymeifitsm a merchant (event) should not necessar-
ily precede payment® the same merchant (evebjt A single trace of the form
..;a;..;b; .. is not a violation of the policy since the payment from the chant may
be a coincidence. However, if all the purchase historiesainimg ab were of the
form ..;a; ..; b; .. then the policy would be violated. A policy model trackingris-
actions could not enforce this policy because it would negionitoring more than

one sequence of transactiéns

e Global spending limit policy: Employee purchases should not exceed $10,000. A
company may distribute programmable payment cards, eadabdito the same bank
account, to 10 employees. The company does not want the gegd@s a group
to spend more than $10,000. As was the case with the angsgribmit policy,
enforcing this policy requires observing more than one saqge of transactions,

and therefore cannot be enforced by a single policy modeihirzg one card.

e Loan policy: Any money borrowed must be paid back. For example, a cadehol
is allowed to borrow money—eveti—so long as that money is payed back—event
p—eventually. This policy is a property since the validityaofequence of transac-
tions does not depend on the other possible sequences. EQwds not a safety
policy as there are valid sequences where a prefix of the seque not valid. The
sequence; a; a; p is valid since the borrowed money is payed back, but the prefix
b; a; a is not valid, since money has been borrowed without beingmed. A policy
model cannot know that a cardholder will eventually retura money, and there-
fore cannot distinguish betweena; a; b andp; a; a before allowing the cardholder

to borrow money.

4The anti-bribery policy is similar to an information flow po} about program control flow: we would
like to ensure event occurring does not necessarily cause ewent

5The loan policy corresponds to a liveness property for mogbehavio—we require that event
eventually leads to responke

71

¢ Alcohol purchase policy Alcohol can only be purchased with a meal. An employer
may wish to restrict alcohol purchases. An alcohol purcliegenta) can only take
place just before or after food has been purchased (#yeBGobnsider a transaction
requesta for alcohol which is made before any food purchase. A poligdsi
cannot authorize the purchase because the cardholder meaymey the required
food. However, the cardholder may be planning to purchasdaibd immediately
after thea transaction request takes place. As with the previousydhe policy
model cannot enforce policies in which one event can onlg fakce if a certain

future event also takes place.

If we restrict policy automata to only have a finite number t@itss, we cannot en-
force any policies that require counting or storing unbadhformation. For example,
consider a trading on a margin account where a cardholdeogan an account (event
a), borrow a dollar (evertt), do some investing (even}, pay back a dollar (eveni and
close an account (even). A policy requires that every dollar that is borrowed must b
a paid back before the account is closed. A sequeneetob;i; p; p; c is permitted but
a; b; b i; p; cis not. In general, the policy requires that a transactiguerce must contain
at least as many’s asb’s. Since this would require counting the numbeb@&vents this
policy cannot be enforced by a finite state policy model. (esv, if we put some bound

on the number of dollars borrowed it is possible to enforegablicy.)

Storing and Retrieving Information

A natural feature one might want to add to a payment card isseesyfor logging im-
portant events. For example, it is in a merchant’s interedrdck a customer’s pur-
chase patterns—such information can yield efficienciestunré stocking and promotional
strategies. A merchant could install an applet on a prograbhepurchase card (presum-
ably with a customer’s consent in exchange for a discounttwrespecial treatment) that
records the transaction events that occur with the card.oAtespoint in the future the

merchant will retrieve this event log from the card. The pphutomata model does not

72

cover such behavior. Chapter 4 discusses some ways a patesnata described in the
Polaris language used by our tool can interact with arbjitdava code using amported
function However, our model does not account for any extra API thatsgyaccess to
information about the applet’s state. The only side-effebaait our model considers are

those that affect future accept/reject decisions.

Transaction Model

The policy model uses a simple transaction model where ddios requests are either
approved or rejected and then never considered again. Oneaneagine richer models

where a transaction request could be conditionally apptewel then approved or rejected
later based on new information. (Such a model would alloan'sactions’ in the database
sense of the word: a sequence of events that may not be simeaita but are grouped
together as an atomic operation.) For example, it would béulig an on-card policy that

recognizes the card is being used fraudulently could renéx@ previous purchases and
retroactively reject those that now appear to be fraudulént the other hand, we may
wish to retroactively approve a purchase that could not teen authorized earlier; the
alcohol policy of Section 3.6.2 could be enforced by cowndidlly approving an alcohol

purchase and then confirming this purchase when it is cleaaltiohol is being purchased

as part of a meal.

Communication Between Policy Automata

The composition mechanism in the policy model formalisrowvad little communication
between policy automata; a policy submits an anonymous, waidéch may affect the
result of the resolution function, and this result gets pdde other policy automata. This
restricted communication channel was by design, as a siogigosition mechanism
makes analyzing the system easier, and many useful potiaiestill be represented as
policy automata (as demonstrated in Chapter 4). Howevercameimagine situations

where a richer form of communication may be desirable.

73

For example, we could allow a policy automaton to exchangesages of some sort
with other policy automata. This would allow policies to lgat information about what
other automata are present in the model, or what informédté@nbeen gathered by other
policies. This data could be used to determine which votabaost. For example, consider
a policy automatom,,., that wants to maximize the amount of money spent. Normally,
such a policy would vote to approve all transaction requddtsvever, if A,,., detected
another policy automatod; which limits the cardholder to at most three purchases, then
Aax could modify its vote so that low cost purchases are rejedbs would encourage

the cardholder to spend more on the allowed three purchases.

Similarly, a policy automaton could delegate certain infation gathering responsi-
bilities to another policy automaton. For example, seveodity automatad,, .., A, may
want to adjust their votes and current states depending eth&hor not the transaction re-
guests is considered to be an emergency—for example, a paymeehospital emergency
room. However, the decision on what constitutes an emeygeray require a complex
examination of the past sequence of transaction requesgsoBucing such functionality
in all £ automata is inefficient—it would be simpler to have one awttun which decides
whether a given event constitutes emergency and then astdihat information to the
other automata. (In Section 4.2 there is an example thatshow this can be approxi-
mated using the defeasible logic voting mechanism, butrtfegrnation can only be sent
to the resolution function, not directly to the automata.ivhikar partial solution is possi-
ble using imported functions, also described in Sectior-~4h@t such functionality would

be outside the formal model.)

Our communication mechanisms could be enhanced with sorhefsuthentication.
In the policy model formalism any policy automata can sulanit vote. It could be useful
to restrict votes based on the automata that submit thers.cbhild be used in conjunction
with the emergency signaling policy automaton describeyeb-only a privileged policy
automata could submit a vote or broadcast a message imgjdatit a given transaction

request is an emergency. This authentication mechanistd kit the disruption caused

74

by a user adding a poorly designed or malicious policy automto the card.

3.7 Summary

In this chapter we presented the security automata formalef Schneider [60] and Lig-
atti et al. [41] and adapted and extended them for our progpante purchase card appli-
cation. We showed that many of the policy classes for rure-tmonitors (for example,
liveness) have corresponding policies in the world of pasiiig policies. Our extensions
included the notion ofjraceful enforcementvhich requires an automaton to make mini-
mal changes while ensuring that a cardholder obeys a palieyproved that suppression
automata are capable of gracefully enforcing all safetyertes.

Ligatti et al. do not discuss composition of suppressiommata. We showed how
a naive composition is problematic. To solve this problera,use a voting mechanism
based on defeasible logic to compose indivigaadicy automatanto apolicy modelvhich
is essentially a suppression automaton. This formal madebpable of describing an
overall purchase policy as a composition of smaller modsui@arpolicies.

With this formal definition in hand we investigated varioosmal properties that cor-
respond to real world properties that are of interest tocgaliesigners: conflict-freedom,
redundancy and refinement. We also used this formal definitiollustrate the limits of

our policy enforcement mechanism.

75

Chapter 4
Language

Instead of encoding policy automata as a set of mathemaintiies as described in Sec-
tion 3.3.5 we use a less cumbersome graphical languagesthiatsier to popular model-
ing languages. There is a straightforward correspondeetveelen this language and the
mathematical representation discussed in Chapter 3. drctiapter we present this lan-
guage and discuss its suitability for encoding purchaswoigies from a more empirical
and engineering-centered perspective, in contrast to tire formal discussion in Chap-
ter 3. We discuss a number of example policies, including afsgolicies taken from a
real enterprise purchase card. We also discuss our detemiic voting mechanism and

compare it to other voting mechanisms.

4.1 Description of the Language

We split the state of a policy automaton into two componentedesandvariables If
M is the set of modes andl is the set of possible values stored by variables then the
automaton’s set of states@s= M x X. Modes are akin to control points while variables
record data.

The language is a mix of graphical and textual notation. f&dgul shows the graphical

interface used to create a policy model. We present the syitthe language in this

76

&po].icyz.rml - Polaris
File Edit View Options Run Help

‘ new H apen H save | | Z00m- H Z00m+ H select || point || mode || trans || back || prop |

initial mode restricted

operation

bhonus
purchase ftext:r1:if price =100 then {1 == yes
allowed npame:bonus purchase allowed

[4]

A |]

4 [BE

Figure 4.1: Polaris automata editor

type-decl*
* automaton automaton . automaton
request-type

Figure 4.2: Structure of a policy model

section using a both graphical and text elements. The grapbiements are presented
in figures while the textual elements are described in Talle 4Ve use the notation
Z* to mean zero or morg’s in sequence. We use the semicolon “;” as a separator for
concatenated elements, arjtlihdicates a choice between elements.

Figure 4.2 shows the syntax used to specify a policy modelolicy model consists
of four elements: an optional list of type declarations, tiaal list of imported function
types, a type specifying the transaction request strucamée a set of policy automata.
The type declarations, imported function types and traimacequest type are specified
textually—their syntax is given in Table 4.1. The type deatians allow a policy developer
to define types that are useful for the policies; for examgleolicy developer can define
an enumerated type with three valygdJ, US, OTHER that indicate where a purchase

is taking place. A developer can also define arrays and regpes$ with fields to make

77

Type Declaration
Imported Function

type-decl ::=
fou=

Request Type request-type ::=
Type T U=
Enumerated Type
Range Type
Array Type
Record Type
Number n €
Identifier d €
Variable Declarations var-decl-list
Guard guard :=
Action List action-list ::=
Assignee a =
\ote Statement vote-stmt ::=
\ote vt =
Defeasible Logic Rule ron=
DL Implication > =
DL Literal [==
Expression e =
Operator op =

type id is T

imported : 7 X -+ X T — T
request is 7

id | bool

| [id, .., id]

| channel[n, 7]

| recordlid : T;..;4d : 7]
1,2,...

the set of non-numeric strings
id:=e:T;.;id:=e:T

e

a:=e;.;a:=e

id | a.id | ale]

if e then vt

Ty

L.l {}>l

> => | ~>

id | ~id

true | false |n|id|eope| —e
| id(e,..,e)| e.id | ele] | ~e

| if e then e else e fi

o & V=== <|>] <>

Table 4.1: The textual elements of the language used to enmalety models

78

var-decl-list
mode mowde

Figure 4.3: Structure of a policy automaton

storing data easier. For example, a developer could defewad type with fields for year,
month and day so that dates can be recorded and modified ¢enthgn The imported
function types specify which functions are available frdra énvironment and what their
arguments and return types are. Imported functions aresied below in Section 4.1.1.
The transaction request type specifies what informationdsable about the transaction—
this determines what the sétof possible transaction requests contains. For example, a
transaction request could be a record with three fields: tice pf an item (for example,
$30), an identifier specifying the merchant, and an integeng the current time. The
transaction request is referenced using a special ideritifie For example, in a policy
automaton might set a variable with a statemextt.price ”which indicates that the

variablex will be set to the price of the current transaction request.

As mentioned above, the policy automata are specified graiyhby drawing a rect-
angle. Inside this rectangle the policy developer drawst afseectangles representing
modes, and arrows connecting the modes. The policy automeattangle can be anno-
tated with some text indicating the variables stored by thteraaton. Figure 4.3 shows
the structure of an automaton. Both the type and the initibleris specified for all of an
automaton’s variables.

The § transition function is specified by drawing arrows from oned®a to another.
Figure 4.4a shows the general structure of an arrow. Eadwas annotated with a
guard which is a boolean expression involving the variables efghlicy automaton, the
transaction request and a special boolean variable “yeghatitrue if and only if the last

transaction request was approved. The boolean expresssimilar to the expressions in

79

|
mode | g | ™ | vore-sime

action-list; L e e — o

Figure 4.4: Structure of (a) an arrow and (b) a mode

high-level programming languages like Java or C. In additmthe guard, the arrow may
contain a list ofactions which specify updated values for the variables. For exagi
arrow fromm to m’ could be annotated with the guartdprice<30 & count==1

& yes”, where count is a variable and is a transaction request. It may also have a
single element action listcbunt:=2 . Such an arrow gives a partial descriptionof
mapping(q, t, yes) to (¢') whereq is a state with mode: and the variableount = 1, ¢ is

a transaction request with a price under 30, and wheigea state where the active mode

is m’ and the variables hold the same values as in gtateept thatount is now 2.

There is a special arrow with no source mode that indicateshwhode is the initial

mode of an automaton.

The voting functiony is specified by annotating the mode rectangles witte state-
ments as shown in Figure 4.4b. Each vote statement has a boolgaession (like the
guard attached to arrows) referring to the current traimacéquest and the variables of
the automaton, and a vote. If a policy automaton is in a mode which is annotated
with vote statemenj and a transaction request arrives that, along with the ouvegiable
settings, makes the boolean expression true, thenwdiecomes the policy automaton’s
vote. Votes are lists of defeasible logic rules written ia #yntax of the Deimos defea-
sible logic query tool [48]. Each vote statement therefawega partial description of
~. Figure 4.1 shows a list with one rule that has been attaahé¢klet “bonus purchase
allowed” mode. The expression ipfice < 100 ”and the voteis{}=> yes”, which
is {} = yes written using ASCII characters. The rule essentially sagentludeyes

tentatively unless others override.”

80

4.1.1 Imported Functions

The Polaris language is intended to capture the core bahafveopolicy which depends
on the history of previous transactions. The language ismehded as a general purpose
language for arbitrary control flow, data manipulation agdong. However, a policy may
need to access or manipulate data in order to make decidbaog permitting a transac-
tion. We feel that such functionality should be implemernited language appropriate for

that class of behavior, and then integrated with policiexdbed in the Polaris language.

The Polaris language offers an interface to general purpasgramming languages
throughimported functionsAn imported function is declared in the policy model and can
be called in any expression in any policy automaton. Impgbftections are intended to
allow policy designers to incorporate functionality thahaot be expressed succinctly, or
expressed at all, in the Polaris language. For example,@ession to check if a merchant
is on a list of approved merchants can be writtenis&gproved(t.merch) ”instead

of writing a long expression of the form

t.merch==SEARS V t.merch==WALMART V ...

A policy designer could also use an imported function to kleegptographic properties of
transaction request data, something which would be diffmuimpossible using Polaris’

syntax.

The actual implementation of the function must be suppliledugh some mecha-
nism external to Polaris—for example, it could be writtentbg policy developer—and
compiled or linked with the Polaris-generated executabedmplementing the policy
automata. In our current implementation for the Java Caatiqgein (described in detail in
Chapter 5), the policy designer writes a Java Card compliave implementation of the
function which matches the template generated by the Batampiler. This Java imple-
mentation is then combined with the Java files produced byPtilaris compiler before

Java compilation.

81

4.1.2 Translation to Formal Policy Automata

The Polaris language is intended to be user-friendly wayetsying the formal model
described in Chapter 3. Everything in the Polaris languagebe easily mapped to the
policy automata formalism from Section 3.3.5, with the #igant exception of imported
functions. The semantics of the language described in thapter is defined by trans-
lating the language to the formal model, and then applyirgsamantics described in
Section 3.3.6.

The setT’ of transaction requests is specified by the request typégitiansaction
request has type thenT is the set of possible values that a variable of tygan take.

Recall that a policy automaton is a four-tugle, o, v,). A policy automaton in the
Polaris language defines a 9dtof modes and a list of typed variables . . ., v,. Let X;
be the set of possible values the variahlenay take. The formal automaton’s set of states
QissimplyM x X; x...x X,. The initial statey, is (mq, v10, - . ., Un0) Wherem, is the
initial mode (as indicated by the special arrow with no seurmde) and; , is the initial
value of the variable;, which is specified when the variable is declared.

As mentioned above, the voting functian: Q x T' — D is specified by the col-
lected vote statements attached to each mode. Each mode’statement gives a partial
description ofy, indicating howy behaves for states composed of that mode. If no vote
statement is attached to a madghen~y maps all states where is the mode component
to a default empty vote containing no rules.

The transition functiord : @ x T x {yes,no} — (@ is similarly specified by the
collected arrows in an automaton. Each arrow gives a paltistription ofd, indicating
how the function behaves in the source mode of that arrown Hraow starts ain and
ends atn’ with guarde and variable updates, := z/,...,v, =) thend(q,t,a) =

/

(m/,2y,...,x))if ¢ = (m,z1,...,2,) and the arrow’s guard evaluates to true when the
variables, the transaction requesind the specigles variable (recall thages is true if the
request was approved) are substituted with their respgeetiues. If no arrow starts from

the mode of the current state, or if no such arrow has a guatcetfaluates to true, then

82

the state remains unchangedy, t, a) = q.

Semantics and Analysis of Imported Function

If the policy model has imported functions then thend depend on what values the
functions return at runtime. For example, if an arrow legdimom m to m’ has a guard
“E(t)” where “E” is an imported function returning true oil$a, then (assuming the policy
automaton has no variablesnaps(m, t, a) tom’ if “E” returns true.

Polaris makes certain assumptions about the behavior afrbegh functions. First of
all, we assume imported functions will eventually terméenanhd return a value without
throwing exceptions. We assume the function will return medhat is of the proper
type. We also assume that the imported code will not intenfgth the code generated by
compiling the policy automata.

Even under those assumptions we cannot predict exactly homwported function
will behave. If we assume that the “E(t)” predicate satisGias assumptions then it is
clear how the policy automaton will behave at runtime, whHendode implementing the
predicate is available. However, our analysis algoritharmot precisely model whether
a given argument will satisfy the predicate.

There are a number of strategies for accommodating impéutedions in the analy-
sis. The analysis algorithm can leave such predicatesarpigted and conservatively ex-
plores both possibilities. For example, the procedurechatks conflict-freedom would
not actually check that a seller is on the list of approveddees. Instead, the analysis
checks that there are no conflicts whether or not the selsgpsoved. If this conservative
analysis yields conflicts that are not actually possibletthe policy writer can include
simple constraints on the predicates to eliminate some@micounterexamples, or bring
some of the external code’s functionality into the policyamaton by replacing a call to

E(...) with an expression of the form

if (t.merch==SEARS) then true else E(t.merch) fi

83

so that Polaris can model enough of the function’s behawiaxvbid a spurious counterex-
ample.

A policy developer may wish to mark an imported function asua function (that is,
the function will return the same value at different invacas with the same arguments),
and Polaris could exploit this in the analysis or code-gatien (for example, the results
of such a function could be cached safely).

Some of the restrictions on the imported code, such as noifyirgidata that is used
by the compiled automata or returning data of the proper,tigopartially enforced by
the Java type system—we mark variables in generated coqwiaaté’, and the imple-
mentation of the imported code must match the method typéwillinot compile. If
the imported code throws checked exceptions then the Jawpiley will show an error
instead of compiling the policy (the imported code may $titbw run-time exceptions).
Other properties, such as termination, satisfying anyttaimés specified by the policy de-
signer, or tighter constraints on what values the importeteanay return, could perhaps
be checked by a Java analysis tool like a model checker ac stadlysis tool. The Po-
laris code generator could generate JML[12] annotatiotisariemplates of the imported

methods to aid a policy designer validate an implementation

4.2 Example: A Payment Card Policy

We now show an example of a policy model made up of the follgvgalicies:
P; Allow up to 3 purchases per day.

Pr Guarantee payment to emergency services twice.

P,.. A cash card: spend no more than $500 total.

Py No alcohol can be purchased.

P, Prevent purchases of prescription drugs which conflict thiéranti-depressant Tofranil.

84

Imported functions:

E:merchantType -> bool

request is record [price:int; seller:merchantType; time:int;
type:[ALCOHOL, MAOI, ALBUTEROL, NORMAL]]

P3:
var time:=0

PE:
no variables

Pcc:
var total:= 500

PN:
no variables

Pt:
no variables

s 7
Lif t.price<=total |
then {}=>yes |

|

Lelseg->yes_

yes & total>t.price;
: t.price

total := total -

then ~e->~yes |

"
I if (ttype==ALCOHOL) |

yes;
mode 0 time:=t.time mode 1
i i [g,
) 1
| iftrue then {} => yes | : if true then {} => yes :
e e — -
yes & (t.time-time>=24); ves:
| time:=ttime '
I___‘Td_mEdS___1 . e __mDode2_ _ _ _
y If (time-time<24) | =1 ifruetheng=>yes |
I then {} ~> ~yes | L e e e e - — I
| else {}I=>yes |
mode 0 yes & mode 1
‘o TS 1| E(tseller); | F -~ —-————=—~
I if E(t.seller) | (l) | if E(t.seller) :
| then {}->yes; {}->e; | | then {}->yes; {}->e; |
| else{}->~e | | else {}->~e |
end mode yes &

E(t.seller);
yes & end mode
total<=t.price; - - ===
——————p | if true then
: {} ~> ~yes :

f (t.type==MAOI) then {} ->~

| else {} -> tof

= - T Tt T |
1!

yes

|
| if (t.type==ALBUTEROL) then {} ~>~ yes |
|

Figure 4.5: Example payment card policy model

85

The last policy,P;, deserves some explanation. Tofranil is an prescriptiog dsed to
treat depression [62]. It can be fatal when combined withug dinat is a monoamine ox-
idase inhibitor (MAQI). We envisio®; being installed by a doctor or a pharmacist when
the cardholder begins taking Tofranil. This policy will pemt purchases of drugs that
conflict with Tofranil, thereby reducing the risk that a nais¢ by a doctor or pharmacist
leads to a fatal drug interaction. Tofranil can also interaith another drug called Al-
buterol, but the interaction is less severe so our policgraaton is not as insistent about
rejecting purchases of Albuterol.

Figure 4.5 shows these five policy automata in a simplifiethfof the graphical lan-
guage accepted by our prototype. Variables are declarda #:ft of the diagram, along
with the initial value of the variable. For example, theialivalue of P..’s variabletotal
is 500.

Modes are indicated by rectangles with solid lines. A moddiss are contained in a
rectangle with a dotted border within the mode. Rules aréavrin the form ff expres-
sionthen vot€. The expressior(t.seller) used in the rules oPy is a predicate
that is true ift.seller is contained in a set of approved emergency service seftars (
example, hospitals and ambulance companies). In this ssiprethe E(..) " is anin-
vocation of an imported function that is supplied from a ex&library or implemented
by the policy designer. The worl.coHOL in the rule of Py refers to a standard product
identifier that identifies a purchase as alcohol. Similding,wordsvAol andALBUTEROL
in P, refer to standard identifiers for particular classes of drug

The rule’svoteis written as a list of rules of defeasible logic. We descalfew of the

votes that appear in the example here.
{}=>yes the transaction request should be approved tentativelganube overridden
{}~>~yes override a tentative approval

{}- >yes; {}- >e approve the transaction and assert that the lieialtrue. Makinge

true signals to other automata that the transaction reigiastemergency.

86

~e->~yes if e is not true then reject the transaction request. This vdtevalPy to

overrideP; and P,. without conflicting with Py.

When no rule applies in a given state then an empty set of sibledogic rules is used as
the vote.

As described above, arrows represent transitions betweelesn The annotation at-
tached to the arrow has the forraxpression action-list'. The expressiorindicates when
that transition is enabled and tlagtion-list determines how the variables are updated.
For example, inP,. the transition with an expressiogés & total <= t.price "is
enabled when a transaction request has been approved aothihe equal to the transac-
tion price. If the action-list is empty then no change willlbade to the variables. When
there is no enabled arrow starting at a mode then no updatads o variables or modes
when the transaction request is approved or rejected. Fompbe, if P.. is in mode 0
and a transaction request is rejected then the varialdé is left unchanged and the
automaton stays in mode 0.

We now sketch how the policies in Figure 4.5 react when gikerfallowing sequence
of transaction requestsj, a $40 alcohol purchase which is not an emergency;tanal
$300 bicycle purchase. The requéshas its ‘type’ field set taaLCOHOL so policy Py
will vote ~e-> ~yes, while Py will vote {}-> ~e because the request is not from an
emergency seller (i.eE(t.seller) is false). The defeasible logic engine will rec-
ognize that these two votes form a proof-ofes . PoliciesP.. and P; both contribute
{}=>yes as votes, but this defeasible rule is overridden by thetsuie in Py’s vote.
Policy P, contributes a voté}->tof , but this vote does lead to a proofy#s or ~yes .
Since~yes has been defeasibly proved aygs has not been proved we reject the trans-
action. All the arrows in our policies are enabled only wheraasaction is accepted so
no updates are made to variable or modes after the first tmsaequest is rejected.

Whent, is submitted the policy’.. supplies the votd } =>yes because the price of
$300 is below the value of the variakietal , which was set to 500.; submits the

same vote ag’... Since this purchase does not involve alcohol the paoltgyhas no

87

PD: Pweb :

g

Figure 4.6: A simple firewall policy model allowing incomirmckets destined for port
80

specific vote—a default empty vote (i.e. a zero-length listiefeasible logic rules) is
therefore submitted Py submits the votq }-> ~e since the seller is not an emergency
seller. PolicyP, again submitg }->tof since the purchase involves neither Albuterol nor
an MAOI. The defeasible logic engine will show thets is defeasibly provable since no
votes overrule’..'s vote. Nor do any votes concludeyes so the transaction is approved.
This triggersP; to move from mode 0 to mode 1 and updatdiitee variable to the time
of the transactionPx will not change modes because the seller is not an emergehey s
P.. will stay in mode 0 but it will change the value of its variabdéal from 500 to 200.

Py and P, each have one mode and no variables so they do not updatsttteir

4.3 Example: Network Access Policies

We think that our formal framework is general enough to bdiagperhaps with minor
modifications) in domains other than payment cards. In @a&r, we feel that network
access control is a suitable application. In this sectiorpresent some network access
policies that have been encoded in the Polaris language.

A common firewall configuration blocks all incoming IP packahless they are headed
for a particular server that is listening on a specific podr &le, a firewall protect-
ing a web server may block all packets that are destined fpmpant other than 80, the
standard HTTP server port. We can represent such a poliog tis¢ two policy automata
pictured in Figure 4.6. The automatdt, sets the default policy: tentatively reject all

incoming packets (that is, packets where ithefield of the transaction request is set to

88

e

var flow

mode 0 yes & mode 1
f——————————=—-- | tout, 1!
: if t.in then {}=>~yes 1 |flow:=t.flow |

\ yes & t.end

Figure 4.7: A stateful firewall policy automaton allowingoming response traffic

- e - ——— = == -

true). The automatofy,;, overridesPp (since its vote uses a strict rule) in the case that

the incoming packet is destined for port 80.

The policies in Figure 4.6 do not have any non-trivial stéte.can use a stateful policy
automaton to model a policy that allows incoming packety dfrthey are responding to
a previous packet that was sent out. Policies like this aeel tis allow users to contact
external web servers without allowing external entitiesontact internal servers. The
policy is shown in Figure 4.7. This automaton tentativefgces incoming packets until
an outgoing packet is seen. The automaton then records tharfformation for that
outgoing packet and allows response traffic in that flow wnpiacket is seen that ends the

connection, when the automaton returns to its originaéstat

We can use a similar automaton to specify a web server acodisy.pConsider a
news web site that embeds images in its web pages. HTML akhovesitent developer to
embed images from arbitrary URLS in a web page, so its relgteasy for other web sites
to embed pictures from the news website in their own pages.nélws web site may want
to ensure (for licensing reasons, for example) that its esamnly appear embedded in its
own pages. The policy automaton in Figure 4.8 implements auymolicy. The automaton
begins in a mode that refuses access for files with a JPG éxten¥hen a client requests
an HTML file the automaton moves to a state where all requestteatatively allowed

(allowing other policies to restrict access for other rea30

89

Pimg: q

var flow yes &
mode 0 endsWithHTML(turl) | _ _ _ model
————————— A -
: if endswithJPG(turl) | — = : it flow==tflow then !
L then {}->~yes | t.flow:=flow L _{}_=>_ye_s !

\ yes & t.end

Figure 4.8: A web server access policy automaton proteatiage files
4.4 Evaluation of the Language

In this section we attempt to evaluate the language usingngbau of approaches. In
Section 3.6.2 we examined some of the formal limitations batean be expressed using
the policy model formalism. In this section we will use a mar®rmal and empirical
approach. We give some examples of broad classes of politiet can enforced with
the language. We also examine the University of Pennsyd&@purchase card system
and show how many of the policies for that system can be repted in the Polaris
language. Finally, we illustrate the effectiveness of tefedsible logic voting mechanism

by comparing it to some other voting mechanisms.

4.4.1 Policies That Can Be Encoded

The Polaris policy language is capable of representingrabwuseful purchase policy

types, including:

e Approved/Rejected Merchants Polaris can encode a policy that only approves
purchases from a list of merchants, or merchant types (famgke, hotels or fast
food restaurants). Polaris can also encode a policy thai@ss purchases from a
list of merchants or merchant types. Figure 4.9a shows amggheeof a policy that

excludes purchases from airlines and taxicabs. Mae field (Merchant Category

90

q no variables

Uit (tmec>2999) & (tmce<3300)

: then {}=>~yes
I if (t.mcc==4121) then {}=>~yes
|

else {}=>yes
P a
a

q no variables q no variables

mode 0 mode 0
reTT T T T T T T T T T | ‘o T 1
| if (t.price>1000) then {} =>~ yes | if ((t.IocaI__hour>20) &(t.local_hour<g)) |
else {} => yes | then {} =>~ yes !
L _______ ! (e f e ______ !

b c

Figure 4.9: Purchase policy automata for (a) rejectingatentlasses of merchants, (b)
imposing a per transaction spending limit, and (c) prevegnpiurchases made at night.

91

Code) referred to in the policy is a standard identifier assigoy credit card com-
panies to classify merchants by their type of business [B8]mcc in the closed
interval [3000,3299] indicates the merchant is an airlarej anmcc of 4121 indi-

cates that the merchant is a taxi company.

Approved/Rejected Products We can encode a policy which excludes or includes

certain products. The policky in Section 4.2 is an example of such a policy.

Value Limit : We can encode a policy that sets an upper limit for the mopegtsn

a single transaction. Figure 4.9b shows an example of suchi@ pvhich ensures
that no more than $1000 is spent in a single transaction. tisadilly, we can encode
a policy that resets the limit after a period of time—for exden allowing no more

than $2000 to be spent in a week.

Limit the Number of Transactions: We can encode a policy that limits how many
transactions can take place using a card. As was the cadeefoalue limit policy,
we can reset the limit after a period of time. The polieyin Section 4.2 is an

example of such a policy, which has limits a card to three Ipases per day.

Cash Card Policy. Polaris can encode policies that limit a card to a set lirhdlb
total purchases. The polidy.. in Section 4.2 is an example of such a policy, which
has a limit of $300.

Time Windows: We can encode a policy which restricts purchases at cditags

of day. Figure 4.9c shows a policy which prevents purchastgden 9pm and 6am.

Drug Interactions: Polaris can encode policies that guard against harmfud dru
interactions. Policy?; in Section 4.2 is an example of such a policy concerning the

drug Tofranil.

92

4.4.2 The Penn Purchasing Card System

In this section we describe the policies that the Universitiennsylvania (Penn) applies
to use of its corporate purchasing card, the Procard. Wedkamine how these policies
can be encoded as a Polaris programmable purchasing card.

In the twelve months to September 2004, Penn purchasing smea than $82 million
in more than 115,000 transactions, of which almost $464y20spent in more than 2200
transactions using the Procard [57]. Most Penn purchasesade through the BEN Buys
and Penn Marketplace systems, which are electronic pwechagems in which trusted
suppliers make arrangements to participate. The Procantieisded for purchases with
vendors who have not yet taken steps to be included in thérehec marketplace. A
separate purchase card called the Fleet Fuel Card is aeaftatpurchases of fuel and
vehicle maintenance.

The policies governing the use of the Procard and Fuel Camlslescribed in the
Purchasing Card Cardholder Guide [69] and on the Penn psirghavebsite lfttp:
/lwww.purchasing.upenn.edu). We have examined these documents and ex-
tracted a reasonably complete set of policies for the cahg Arocard policies are sum-
marized in Table 4.2 and the Fuel Card policies are sumnthnz€able 4.3. The “Com-
modities Matrix” mentioned in PC5 is a table showing whicpenditures can be spent on
which purchasing method. For example, alcoholic beverages be purchased through
Travel Office mechanisms (the Travel Office handles entartant expenses) but cannot
be bought through the BEN Buys system nor by using a ProcaottleB water must be
bought through the BEN Buys system, not the Procard. Bookdeadought through ei-
ther system, while box lunches can be bought only througRtbeard. The Commodities
Matrix lists 101 categories, of which 25 are permitted fovdard purchases.

At the time of writing, policy PC6 only applies to one suppli€olicy PC7 requires
that purchases that can be made through Penn Marketplatbemsde using that system
instead of with a Procard. There are 102 suppliers avaitabbeigh the Penn Marketplace

system. There are 213 suppliers on the list of deactivatpflguns mentioned in policy

93

PC1. Only the person listed on the card may use the card.
PC2. A suspended or terminated employee may not use the card.
PC3. Purchases must not be for the sole benefit of the cathold

PC4. Purchases must not be split into multiple transactio@soid a per transac-
tion threshold.

PC5. Purchases must only be made for commodities listed rasigsgble in the
Commodities Matrix.

PC6. Purchases must be not made from a supplier who has defusake part in
the Penn Marketplace program.

PC7. Purchases must be not made from a supplier who is takirignpthe Penn
Marketplace program.

PC8. Purchases must not be made from suppliers who have baetivdted from
the BEN Buys Supplier Database.

PC9. The total spending in a month must not exceed $5,00@cHgsary, this limit
can be raised with approval from the appropriate senior Giahofficer.

PC10. A single transaction must not exceed $1,000.
PC11. No more than 800 transactions can be carried out pethmon

PC12. No more than 25 transactions can be carried out in éesiag.

Table 4.2: University of Pennsylvania purchase card policy

94

PCS8.

There are two kinds of Fuel Cards available. One is intenadgfor fuel purchases,
while the other is for fuel and maintenance or repairs forrPeghicles. In Table 4.3,
policy F1 comes in two variations, only one of which appliesatgiven card; a card will
either enforce Fla or F1b. Similarly, policy FM1 comes in tvawiations, one of which
applies to a given card.

In Table 4.4 we show the degree to which each of these policiashe encoded in
Polaris for use on a programmable payment card. Since psliEM1-7 are essentially
the same as policies F1-7 we omit them from the table—angp®&Mn can be encoded
if and only if the policy F» can be. We classify policies using two criteria: whether the
policy can be exactly encoded or just approximated, and howhmve would have to
extend the payment infrastructure. For the first criteria,mark the policy with an X if
the policy can be encoded exactly—in other words, a politgraaton will allow behavior
permitted by the policy and prevent behavior that violabtesgolicy. We mark the policy
with an A if the policy cannot be enforced exactly but we capragimate the policy; this
approximation may allow some behavior that violates thep@nd exclude behavior that
the policy allows, but it can help discourage violationshad policy.

The second criteria indicates what kind of information nhessupplied to the card for
the card to enforce the policy. We assume that a programnpalyl@ent card infrastruc-
ture would make the following information available to theeyment card, all of which is

available in current credit card transaction records:
e The price
e The time and date
¢ An identifier specifying the merchant
e The appropriate Merchant Category Cote()

We envision two possible extensions of this infrastructure

95

Fuel Card policy for fuel-only cards:

F1.

F2.
F3.
F4.
FS.
F6.
F7.

(a) The card can only be used by the person named on thercdrthe card
can only be used for one particular vehicle.

The total spending in a month must not exceed $2,500.

A single transaction must not exceed $50.

No more than 50 transactions can be carried out per month.
No more than 5 transactions can be carried out in a sirayle d
The card can only be used for fuel purchases.

Purchases must not be split into multiple transactioras/bid a per transac-
tion threshold.

Fuel Card policy for fuel and maintenance cards:

FM1.

FM2.
FM3.
FM4.
FM5.
FM6.
FM7.

(a) The card can only be used by the person named on tthercdr) the card
can only be used for one particular vehicle.

The total spending in a month must not exceed $5,000.

A single transaction must not exceed $1,000.

No more than 50 transactions can be carried out per month

No more than 5 transactions can be carried out in a stagle

The card can only be used for fuel, maintenance or rgpachases.
Purchases must not be split into multiple transactiores/oid a per transac-

tion threshold.

Table 4.3: The policies of the University of Pennsylvani&Rdard

96

can be encoded?

policy | yes| w/ list of items| w/ identification| no
PC1 X
PC2 X
PC3 X
PC4
PC5
PC6
PC7
PC8
PC9
PC10
PC11
PC12
Fla X
Flb X
F2
F3
F4
F5
F6
F7

X[X[X| X| X| X| X| > >

X

Policy can be encoded exactly.
Policy can be approximated.
w/ list of items: Assumes card is supplied with data listing
the items or services being purchased.
w/ identification: Assumes card is supplied with authenéda
information about the person or vehicle
involved in the transaction.

> X | > > X| x| X|x

Table 4.4: Which Penn purchasing card policies can and ¢dmencoded as Polaris
policy automata.

97

e List of Items: A list of items or services being purchased is availabld&odard.

¢ Identification: The card can authenticate the cardholder (perhaps thimogietric
means) and the vehicle being serviced (perhaps with an RFIakcode on the

vehicle).

We consider the first extension to be a minor extension, $oramany businesses the list
of items is readily available in electronic form.

Most policies can be enforced exactly with no modificatiothis infrastructure; these
are marked with an ‘X’ in the ‘yes’ column. infrastructureth®@r policies require one of
the envisioned extensions. With a list of items availabla tard, a policy automaton can
exactly encode policies PC5, F6 and FM6 by checking thathallgurchased items are
on the list of approved commodities. Without informatioroabindividual purchases, a
policy automaton can approximate the policy by assumingelaion between the item
being bought and theicc of the merchant. For example, if thecc of a transaction is
a code for airlines then it is likely that a ticket for air tedus being bought—a policy
automaton that forbids airline tickets can safely forbig aarchases from an merchant
marked as an airline. The correlation betweerc and item is not always so strong. A
gas station may sell snacks in addition to fuel, so a fuel edrigh allows charges from
gas statiormccs may inadvertently allow some purchases which violate theanly
policy F6. For stores like Walmart or Amazon, which offer ayawariety of merchandise,
the mcc will give little information about what is actually being bght. We therefore
mark policies PC5, F6 and FM6 with an ‘A’ in the ‘yes’ columndagise we can use the
McCc-item correlation to enforce an approximation of the polayh no change in the
payment infrastructure. Figure 4.10 shows policy PC5 eedak a policy automaton.
Since policies F6 and FM6 are so similar to PC5 we do not iusthow they can be
encoded.

Policies PC1, Fla, F1b, FMla and FM1b are only possible toreafif we have
information about the identity of cardholders and vehitlesg serviced.

Policy PC4 can only be approximated by a policy automatots palicy is similar to

98

the alcohol purchase policy (which forbids alcohol pur@sasmade separate from a meal)
discussed in Section 3.6.2—a violation of the policy onlgdrees apparent after multiple
transactions have taken place, so a policy automaton hasaswm to forbid the first
transaction involved in the violation. However, we could¢ete a policy automaton that
recognizes a series of transactions with the same mercled# m a short period of time
that, when summed, breach the per-transaction threshald eXample, two purchases
from the same merchant each for $900 and made within 5 mimdfteach other would
probably be a violation of the policy since they seem to ate@$1000 transaction limit.
Figure 4.10 shows an automaton that encodes this restricBoich an automaton only
approximates PC4, since a cardholder could wait a longer bietween the transactions
or buy the desired items from a number of merchants. We camagfine any reasonable
extension of the payment infrastructure that would enalpelecy automaton to better
enforce PC4. Indeed, it is difficult to imagine any mechamaeeans for checking PC4 as
it seems like there will always be cases where deciding ipthiecy has been violated is

purely a matter of judgment.

Policies PC2 and PC3 are outside the scope of what can becedftly a Polaris
programmable payment card system. A smart card has no wayostikg whether an
employee has been terminated, since the status of the eegptayn change without the
change being communicated to the card. Nor can Polaris enaqgublicy that forces
a cardholder to only purchase items that benefit Penn ingiEdide cardholder—it is
difficult to imagine a smart card could infer in general th@uachase is being made that

is not for Penn’s benefit.

Of the 12 Procard policies, 10 can be encoded, either appeigly or exactly, as
Polaris policy automata in some form, possibly with addisido the payment infrastruc-
ture. In addition to the policies discussed above, Figur&6 d4nd 4.11 shows automata
for all the Procard policies that are encodable. Of the 168 Eaed policies, all 16 can
be encoded as Polaris policy automata, though two poli@esonly be encoded as ap-

proximations of the original policy, and six of the policiexjuire some additions to the

99

PC1 q no variables PC5 (approximation)

no variables
mode 0

|
| if (tide==CARDHOLDER) then {}=>yes | P mmm = .
I else {} =>~yes | | if (containsBanned(t.items)) |
|

PC4 yes;
1 ; total:=t.price;
(approximation) q e
variables: mode 0 t|g1e:.:_tt.réour;
var total:= O:int Fm—————— = 1 ay-=L.day
var merch:=null:merchiD | I yes & ((t.merch!=merch) V
var hour:=O:int | T T T T T T T T 7 (t.hour!=hour) V (t.day!=day));
var day:=0:int total:=t.price;
merch:=t.merch;
time:=t.hour;
~yes & ((t.merch!=merch) day:=t.day
V (t.hour!=hour)
V (t.day!=day))
Y

end mode

I if ((t.merch==merch) &
yes & (~((t.merch!=merch) I (t.price+total>1000) &

V (t.hour!=hour) I (thour==hour) & :
V (t.day!=day))); I (t.day==day)) |
total:=total+t.price | then {} => ~yes

PC6 q no variables PC7 q no variables

r=--- =" =-="—""="=== h] r=-. . - - === ==
i if (inPennMkt(t.merch)) |

then =>~yes | then {}=>-yes !

Figure 4.10: University of Pennsylvania Purchase Cardcpsdiencoded as policy au-
tomata (1 of 2)

100

PC9

var month:=0:int
var total:=0:int q mode 1

yes; ~ 1= :
mode 0 month:=t. month I'if (t. month==month) & ! yes & t.montht=month;
__________ - | : | month:=t.month;
- N EE— (total+t.price>5000) | total-=0:
:_ _lftr_ue_th_en_{}i>_yej 1 then ~sfo =>~yes | "
| else {}=>yes |

Cyes & t.month!=month;

yes & (t.month==month);

total:=total+t.price;
PC10)
/_} no variables

| (tprice>1000) then {} =>~ !
yes I
| else {} => yes |

PC11 Vvarcount:=0:int
var month:=0:i yes & (t. month==month) &

. (count!=799)
q yes; /\ count:=count+1;

count:=1; mode 1

mode 0 month:=tmonth; | — — — — — — — — — — -
Fr——————====) ~ |
| iftrue then {} => yes : | if true then {}=> yes |
A, — . ___

yes & (t.month!=month);
month:=t.month; yes & (t.month!=month);
month:=t.month;

count:=1;

r—-—=—-=-=-=-"=--- | yes & (t.month==month) &
| if (month==t.month) | (count==799):

| then {}=>~yes |

PC12 var count:=0:int

var day:=0:int yes & (t.day==day) &

(count!=25);
q yes; /\ count:=count+1;
count:=1;
’ mode 1

mode 0 day:=t.day; j——————— A

e T I i = I
I iftrue then {} => yes | :_'f true then {}=> yes |
e e e | L ____

yes & (t.day!=day);
day:=t.day; yes & (t.day!=day);
count:=1; day:=t.day;
count:=1;
mode 2

yes & (t.day==day) &
I then {}=>~yes : (count==25);
R g

| if (day==t.day)

Figure 4.11: University of Pennsylvania Purchase Cardcpmsdiencoded as policy au-
tomata (2 of 2)

101

PC9

var month:=0:int
var total:=0:int

yes; |
mode 0 month:=t.month | if (t. nonth==month) & I
_____________ P | (total+tprice>10000) !
:_if true then {} => yes;{}->sfo then ~sfo=>~yes !
____________ |

| else {}=>yes; {}->sfo |

~yes & t.month!=month;
month:=t.month;
total:=0;

~yes & t.month!=month;

yes & (t.month==month);
total:=total+t.price;

Figure 4.12: Modified PC9 automaton that overrides theahRC9 automaton and allows
a $10,000 per month spending limit.

payment infrastructure. We do not illustrate any of the Fiemid policies as they are very
similar to various Procard policies.

None of the policy automata discussed above use the abflipolkicy automata to
override the votes of other automata. Most of the Penn Pudqmalicies are written so that
they cannot be overridden and they do not conflict with eabkrofThe one exception is
policy PC9, which states that the $5000 monthly spending tould be raised if appro-
priate permission is given. The automaton for PC9 has beewdex with this overriding
in mind: it makes its vote to reject purchases over its lioitditional on the absence of a
literal sfo. Thus, PC9 will be overridden if we install an automaton sashPC9’ shown
in Figure 4.12. When this policy approves a purchase its &sserts the literalfo (indi-
cating it was approved by a senior financial officer) and tloeeeblocks the vote of PC9.

The card will therefore allow a cardholder to spend up to 20 ,a month.

4.4.3 Comparison and Discussion of Voting Mechanisms

In this section we evaluate the necessity and effectiveokegse defeasible logic voting
mechanism by comparing it to the other voting mechanismeribes! in Section 3.3.4.
The comparison is chiefly made by replacing the votes of tlzengte from Section 4.2
with votes from each of the mechanisms, or by showing why sudgdplacement is im-

possible.

102

We are concerned in particular with the four policies P.., P, and Py. Recall that
P5 blocks future purchases after three purchases have takea (fbr the discussion in
this section we assume that all purchases are taking plabenai single day s@s; never
resets its counter to allow further purchaseg). blocks purchases once 500 dollars have
been spent. It is important to note that bath and P.. tentatively approve purchases
which do not violate their respective polices. For exampta with only P; installed
will approve the first three purchases and then deny furtbeshases. A card with both
policies installed will allow any sequence of three pur@sasith a total cost bounded by
$500.

The policy P is an emergency policy that overridés and P.. if an emergency is
taking place. Thus, a card with installed will approve any emergency purchase, even
if the purchase violates the policié} or P...

Finally, Py prevents purchases of alcohol (even if the purchase is ot dirst three
purchases or if does not exceed the $500 total purchasg.lirktwever, in the case of
an emergency purchase, polié}, defers toPy; emergency purchases of alcohol are
permitted.

In the following discussion we attempt to use alternatengptnechanisms to repro-

duce the behavior described in the preceding paragraphs.

Binary Voting Mechanism

Recall that the binary voting mechanigi,, f») has two possible votessue andfalse,
and votes are resolved by taking the conjunction of all tHeso

The binary voting mechanism cannot replace the defeaslgie lyoting mechanism
in our example. Consider a card wifhy and Pg, installed, and two transaction request
sequences; a; a; a anda; a; a; e wherea is an non-emergency purchase arid an emer-
gency purchase. Both sequences will potentially trigggrwhich limits transactions to
three per day. On the finalin a;a; a; a, P; must votefalse in order to reject the fourth

purchase. However will submit the same vote for thetransaction in; a; a; e, which

103

will force the rejection of the transaction even though weulddike Pg to overridepP;;

the binary voting mechanism gives us no way to override apoli

3-Valued Logic Voting Mechanism

Recall that the 3-valued logic voting mechani&hy, f3) allows three possible votegue,
false and L (a sort of ‘do not care’ vote), andtaue vote conflicts with galse vote.

Like the binary voting mechanism, the 3-valued logic votimgchanism fails to model
our example. Again, consider a card with and P installed, and two input sequences
a;a;a;a anda; a; a; e. If the fourtha in the first sequence violates tlig policy then P
must supply dalse vote to force a rejection af. However, fromP;’s perspective the same
holds for the event in the second, so the automaton will supplfale vote. This makes
it impossible for thePr automaton to force the acceptance of ¢thieansaction—voting

true will cause a conflict, and voting will let the transaction be rejected.

Election Voting Mechanism

Recall that the election voting mechanigm,, f.) allows three possible votesue, false
and L, and the transaction request is approved, or disapproependling whether there
were moretrue, or false, votes respectively.

We cannot simply replace the defeasible logic votes of tlaemte with election votes.
Consider an emergency alcohol purchase that is made magtetlaite purchases and
breaches the $500 spending limit. Policies P.. and Py all disapprove of the purchase
and their thredalse votes will counter the ongue vote submitted byP;. The emergency
transaction will then be rejected, contrary to the desingdame.

However, we can approximate the defeasible logic mechamisapacity for overrid-
ing policies by submitting multiple votes. This can be doweirstalling £ copies of
a policy automaton. Since each of these automata will bebasetly the same as the
other copies, this is equivalent to allowing a single autmmaubmit multiple votes—

effectively assigning a numbered priority to each automatdsing this technique, we

104

can approximate our four policy example by using the folloywotes:

Policy | Approval Vote Rejection Vote
P true x 1 false x 1
P.. 1 %2 false x 2
Py 1 x4 false x 4
Pr true x 8 1 x8

In the table above, ‘approval vote’ is the vote an automaittamsts when a transaction
request satisfies the policy (for example, férthe purchase is the first, second or third
purchase) while the ‘rejection vote’ is the vote an automa@bmits when a transaction
request violates a policy. Sindey only rejects bad purchases it supplies a 'do not care’
vote of 1. when a purchase is not an alcohol purchase—it does not icagprove non-
alcohol purchases, leaving that to the other policies onctrd. Similarly, P; votes
1 when a purchase is not an emergency, leaving the decisioppi@e or disapprove
entirely up to the other policies on the card.

The votes listed above ensure thia¢ overrides approvals fron?; and P... It also
ensures that non-emergency transactions will only be apgrib 75, P.. and Py approve.
The emergency policy, with its eight votes, can overriderépection votes from the three
other policies listed.

However, in this scheme a policy model with a single will never approve a trans-
action request, while a similar policy model using a defadasiogic voting mechanism
would approve and reject transactions as desired. Thisfaetrunavoidable—any choice
of votes for policiesP; and P.. will yield either a policy that voted. when it should ap-
prove a transaction, or the votes will not yield a rejectiothie case where only one 6§
andP,. approve a non-emergency purchase. While this voting mésimayields some of
the flexibility of the defeasible logic system, it is unsttetory because of this problem,
as well as the difficulty involved in choosing the votes. Theice of votes for’; and P,
involved a fairly tedious case analysis of the possiblesjadad the two policies could not
be designed as isolated modules. The subsequent assigmragaitudes to thé’y and

Pr automata depended strongly on the votes chosen for thetatbgolicies. If we added

105

more low-priority policies we would have to replaé® and Pg with higher magnitude
policies (or add more copies of those policies).

Finally, it is difficult to imagine using this voting mecham to encode the signaling
capability thatPr and Py use. The policyPxr asserts that the literalis true when there is
an emergency, and other automata can use that literal nvtitei as to trigger conclusions
that would not normally be triggered, or suppress conchssitn this casé’y uses the:
literal to suppress its vote to reject. This kind of simplgnsiling could not be conveyed

using copies ofrue or false votes.

Prioritized Logic Voting Mechanism

Recall that the prioritized logic voting mechanig®,, f,,) is essentially the 3-valued
logic mechanism extended by attaching priorities totthe andfalse votes. (This differs
from the strategy of duplicating automata employed for tleeteon voting mechanism
because priorities are assigned to individual votes idstépolicy automata.) The same
automaton may submit a vote with priority 3 in one case andnstd vote with priority 7
in another case.

The prioritized logic voting mechanism is the most flexibfdele alternative mecha-

nisms considered as it is not difficult to find votes that yitld desired behavior:

Policy | Approval Vote Rejection Vote
P true, 1 false, 2
P. true, 1 false, 2
Py il false, 2
) true, 3 1L

Unlike the case with the election voting mechanism, thisngpimechanism gives the
proper behavior when only thE.. policy is installed—purchases are approved until the
total cost exceeds $500. The votes listed in the table alspreduce exactly the behavior
we expect from the four policies used in our running examelen when only one or

two policies are installed. The election voting mechani$so aequired careful analysis

106

to assign the priorities to the votes while this mechanisthrdit require much analysis.
For the purposes of encoding the four policies P.., Py, and Pg the prioritized logic
mechanism is as expressive as our defeasible logic mechatisould be argued that
for these policies it is better than the defeasible logiegngomechanism, since it is easier
to understand which vote will override other votes when nitfds decided by a simple
number instead of the complex defeasible logic inferengeradhm.

We see two disadvantages of the prioritized logic mechan@ne is that, while priori-
tized logic can encode the four polici€s, P.., Py, and Pg, it cannot encode the signaling

behavior that defeasible logic allows. Consider the follaypolicies:

e Pp: A policy that determines if the purchase involves presmipdrugs and, if it
does, blocks drug purchases except in emergencies. Hawktrex cardholder is

allergic to a drug, purchases of that drug will always beateje.

e P.: A policy that determines if the purchase involves an emageand, if it does,

permits all purchases.
e P,,: Apolicy which is installed if the cardholder is allergic penicillin.

We assume that each policy is developed using special kdgel§erhaps proprietary)
that enables them to learn certain information about pwehal, can determine if a
transaction request involves a certain drug (perhaps bgutting a licensed list of drug
product codes), butitis not capable of determining if ageantion request is an emergency.
Similarly, P, is capable of determining if a transaction request is an gemey, but cannot
determine if a purchase contains prescription drugsis not capable of discovering any
information about the transaction request—it is only therendicate some information
about the cardholder.

We are concerned with the behavior of the card when presevitea penicillin pur-
chase. If the cardholder is not allergic to penicillin (ahéreforeP,, is not installed)
then Pp should approve the purchase only in an emergency—es$gntigldefers toF,

in emergencies. However, if the cardholder is allergic toigéin, P, shouldoverride P,

107

instead of deferring, so that the penicillin purchase ickéol even in emergencies. The
key problem is that the priority aP, depends on the presencel@f, on the card: with
P,,, Pp must have a higher priority thaR.; without P,,, P, must have a lower priority
than .. Furthermore P, cannot determine before voting whetly, is present or if the
transaction is an emergency, Bg must submit a vote that works for each possibility.

We can assign defeasible logic votes that yield the desiebd\ior as follows:

e Pp: If the purchase is a penicillin purchase then vote = —yes; ap = —yes”
e P.: If the purchase is an emergency purchase then Vgte=* yes; {} = ¢”

e P,,: Always vote {} — ap”.

The votes use two atomic formulagandap as signals; they are intended to mean ‘emer-
gency transaction’ and ‘allergic to penicillin’ respeetiy. The vote ofP, will reject a
transaction if eithee is not true orap is true. The vote ofP, tentatively approves the
purchase, but it also asserts tlais true, a signal to other automata (lik&,) that an
emergency transaction is taking place. Finally, the paligydoes not say anything about
approving or rejecting the purchase; it simply assertsttieip signal is true.

We now examine the behavior of these policies when a cardha@tlempts to buy
penicillin in an emergency. There are two cases to consig@eard withP,, installed,
and a card that does not ha¥#, installed. In the first case},, asserts thatp is true,
triggering Pp’s rule ap = —yes, which blocksP,’s vote to approve the purchase. The
purchase will be rejected as it should be, since the carénaddallergic to penicillin. In
the second case, the cardholder is not allergic to pemic#b theP,, policy is not installed
on the card, and the votd } — ap” is not submitted. In this case, neither of the two rules
in Pp’s vote will be enabled because neitlgrmor —e is true. SoPp’s vote will not block
the vote of P, which approves the transaction request. Therefore thigipenpurchase
will be permitted, as it should be.

It is impossible to assign votes that yield the same behamiog the prioritized logic

voting mechanism. The priorities @,'s and Pp’s votes cannot vary depending whether

108

P,, isinstalled on the card. Therefore, when an emergency paecdf penicillin is made,
eitherPp or P, will always override the other policy; iP.’s vote to approve an emergency
purchase overrideB,’s vote to reject a penicillin purchase, then this will hapgeen if
P, is installed, which is contrary to the desired behavior. iiden to get the correct be-
havior we could add some way for policies to query the careééovghat other policies are
installed, but this would unnecessarily complicate thet@rmodel. We could instead ex-
tend P,,, P. or Pp with extra functionality so that, for exampl#,, is able to determine
if the purchase is a penicillin purchase and therefore wmtaverride all other policies.
However, this would force us to duplicate functionality ifferent policies, leading to a
less modular design, and possibly violating licensing @uséy requirements that limit
which policies can learn about transaction requests—pesrtige reason only’, can de-
termine whether a purchase is a penicillin purchase is lsecduelies on an expensive
proprietary algorithm which cannot be copied to multipléigoautomata.

This penicillin example shows how our defeasible logicwgtnechanism, in addition
to having great flexibility in resolving conflicting prioids, allows policy designers to use
sophisticated signaling and make votes conditional on sigrtals. The prioritized logic
voting mechanism cannot be used to encode the same behathoutvextending our
formal model or making policies less modular by duplicafimgctionality.

A second disadvantage of the prioritized logic voting medéma is that, historically,
explicit priorities have been difficult to use in a distribdtsetting. Lupu and Sloman [42]

write that

meaningful priorities are notoriously difficult for usesdssign and may re-
sult in arbitrary priorities which do not really relate teetimportance of the
policies. Inconsistent priorities could easily arise ingtributed system with

several people responsible for specifying policies anayasyj priorities.

Our defeasible logic mechanism attempts to minimize sucblpms by using a more
declarative notation, which implicitly assigns priorgit votes. We feel that a vote which

states “I tentatively approve” or “I definitely reject” is m@natural and less arbitrary

109

than “I vote yes with priority 6”, whose meaning depends oratygriorities all the other
policies have chosen. We believe that using defeasible lagés, where the inference
algorithm resolves many potential conflicts dynamicalbyld potentially yield a simpler
and more modular system for policy design—though a fair canspn would require
long term use of the defeasible logic voting mechanism tofséifferent policy designers
collaborating in a distributed fashion would avoid the peohs described by Lupu and

Sloman.

Replacing the Voting Mechanism

In this section we have showed how the defeasible logic gatiechanism allows votes
which can express various levels of priority, and can exlsignaling that lets votes react
to the presence or absence of other policies. None of theateevoting mechanisms
considered can express the full range of behavior that tfeadible logic mechanism
can. However, if the full power of the defeasible logic vgtimechanism is not needed,
it may be desirable to use one of the simpler mechanisms védrelprobably easier to
understand; many people can understand numbered psasibidge few are familiar with
defeasible logic. In some sense, the voting mechanism issanyeder in the formal frame-
work and implementation presented in this dissertationgifeplaced the defeasible logic
mechanism with another mechanism much of the discussioheofdrmal framework
would be largely unchanged—for example, the algorithmskacking conflict-freedom
and redundancy would work for any mechanism. Similarly, $iptax of Section 4.1
and the implementation presented in Chapter 5 could beyaasiflified to use a different

voting mechanism.

4.4.4 Functionality Outside the Scope of the Language

There are several capabilities that one might want to irelach programmable payment

card which are left out of the language for the sake of sintgli©ata processing is one

110

such capability. Polaris is not intended to model complea gaocessing functionality—
the language is focused on control flow instead of manimgadata. However, there are
cases where such functionality would be useful in a policyme @xample is querying
data structures—many of the policy automata presentedisnctiapter query a list of
acceptable or forbidden suppliers or items. Another exaroptata processing that one
might want in a payment card is some sort of logging functityyavhere an on-card
applet records consumer preferences and reports thattdaiene point in future. Finally,
as mentioned in Section 4.1, a security policy may use cgrpfthic operations to check
that a transaction request is permissible. The Polarisulage is not intended to model
such functionality.

From an engineering standpoint, however, we recognizedbd to allow such func-
tionality in policies that are encoded in the Polaris larggual his motivated our inclusion
of the ability to call “imported” code, as described in Sentd.1. The behavior of this
code is not considered by the model in any detail—we assuatettiese method calls
terminate and do not modify the state variables used to septéhe automaton state, but

any other behavior is not modeled.

4.5 Summary

In this chapter we presented a language which can be useditp eacode policy en-
forcers in a form that corresponds to the formal definitiopalfcy automata discussed in
Chapter 3. This language bridges the gap between a pratimaior a policy designer
and our formal model.

We justified the language, and therefore the underlying &ism, by showing how it
can encode a range of desirable policies, including 10 otiRqgfolicies that regulate the
use of Penn’s purchasing card, and 16 of 16 policies thatagthe use of the university’s
fuel cards. Additionally, we showed example encodings afyraher policy classes, from

cash card policies to policies that protect against harifudy interactions. We justified

111

our defeasible logic voting mechanism by showing how othecmanisms fail to concisely

represent a given suite of policies.

112

Chapter 5

Implementation

We have implemented a prototype of tRelaris system that performs policy automata
analysis and compilation. It includes a graphical intesféar editing the automata, an
analysis engine that checks for policy conflicts, and a apeleerator that creates Java Card
applets that implement the policy automata. The architeafithe prototype is shown in
Figure 5.1. The tool is implemented in Java and is partlytlusing the Hermes [3] code
base. The tool is almost 38,000 lines of code, not includeggraphics library used for

editing the automata.

5.1 Architecture

The prototype has four modules:

Front end: A developer uses the graphical front-end to create, editsand policy
automata. The automata are described using a graphicaldgagnade up of boxes and
arrows which are annotated with small pieces of text; angadutomata is much like using
a graphics application like xfig or Adobe Illustrator. The@uata are stored as XML.
The front end must also interact with the analysis engindustrate the outcome of any
analysis procedures. Figure 4.1 shows a screen shot of thata editor.

Analysis engine: The analysis engine takes a policy model from the front erdl an

113

results &
counter-

examples .
Analysis
engine

Payment
Card

automata,
Front properties

1
1
1
1
1
1
1
end
1
automata 1 applets
\ Code | Java Java C_ard j
> compiler
1
1
1
1
1

generator (Oberthur)

Platform-specific

Figure 5.1: Polaris architecture

checks that the automata satisfy various properties thigrschooses. Currently we

have implemented a conservative procedure for checkinflicisfteedom.

Code generator: The code generator converts a policy model into Java thattistde
for a Java Card. Each policy automaton is compiled into ars¢papplet that implements
that policy. This architecture of separate applets allogys policy applets to added to the

card dynamically.

Payment card: The payment card provides the run-time environment for ey
automata that have been compiled into Java Card appletgpdymeent card takes part in
a transaction via a PC that has a smartcard reader. Befoteatisaction takes place the

policy model implementation must approve the purchaseasgiqu

We use simple typing rules to check if expressions invol\pofcy automaton vari-
ables and the transaction requests are well typed. We chathkypes are used consis-
tently; for example, an integer is not compared to a symballowolean variable is not set
to 3. We also perform checks on the graphical structure tarernthat the picture on the

screen can be translated into a policy automaton.

114

5.2 Analysis

In our implementation we have implemented a conservativ@me of the conflict check-
ing algorithm of Section 3.5. In the Polaris language all pbacy automaton’s votes are
explicitly listed in the automaton’s vote statements. Ogoathm gathers the votes of
each automaton in a model and checks all combinations wherevate is picked from
each automaton. If no combination leads to a conflict thenamebe sure that the policy
model is conflict-free. However, false positives are pdssibwe find a combination that
does lead to a conflict it may the case that no reachable stds to that combination of
votes. In most of the complex policy models we have examihedhumber of states is
much higher than the number of combinations of votes, saallgisrithm can be a cheap

way to check for conflicts.

5.3 Code Generation and the Java Card Platform

The Java Card platform allows multiple applets to be insthdin a single Java Card. Ap-
plets can communicate with each other using procedureaatishared objects. Applets
are protected from each other with a firewall mechanism, alinemter-applet procedure
calls are mediated by the Java Card system and shared abnjgstbe explicitly labeled as
shareable. This architecture yields a natural correspuared@ith our policy models: each
policy automaton can be compiled into an applet so that palitomata can be added or
removed dynamically.

There are two types of Java Card applets that need be gettetia¢enanagerapplet
and thepolicy applet. Figure 5.2 gives an overview of the code generationgss. The
manager applet is responsible for polling the policy aplet their votes, consolidating
the votes to decide whether the transaction request sheutghproved, and then notify-
ing the policy applets about the approval or disapprovakr&hs one manager applet on
a programmable payment card and it must be installed beforefathe policy applets.

Most of the manager applet’s code deals with Java Card andaction protocols; this

115

Policy Model

Policy
Policy Automaton S

Applet m
Template

Manager
Applet
Template

Defeasible
Logic

Engine

Java

Transaction
Request Type,

Code Generation +

A 4

Voting De{iz?éble Manager Policy Policy Policy
Library Engine Applet Applet Applet Applet
Java Java Java -Java Java Javal
Voting Library Policy Applet Policy Applet Policy Applet
Package Manager Applet Package Package Package Package

Figure 5.2: Polaris code generation process

code is specified as a template that is constant for all marsgeets. We envision dif-
ferent applications using different transaction requgsts (for example, in a prescription
drug payment system the transaction data may include irgtom about which drug is
being bought, while a credit card purchase system may owlydie information about
the merchant, price and date) so we automatically gendratsminager applet code that
processes the transaction request data, adjusting it sp#wfic transaction request type.
Similarly, we adjust the voting library which is shared by tholicy applets and manager

applet so that it can handle the appropriate transactiaa typ

The Java Card platform imposes certain constraints on tp&&pplementation.
Garbage collection is not available on most cards, so card britaken to allocate the
minimal memory necessary. Many cards require that all thenamg an applet will need
be allocated when the applet is installed. All data must beedtas 8 or 16 bit values.

Unlike the standard Java platform available on desktopssaneers, a Java Card has two

116

kinds of memory: RAM and EEPROM. RAM is like the RAM in most cpuaters—it
can be read from and written to quickly, and it loses its date@nvpower is cut off (for
example, when a card is withdrawn from a card reading ternifzue to cost and size
constraints, RAM is limited to 1 or 2K in the currently avdila cards. EEPROM will
retain data when power is lost, and it is cheaper than RAM isd@asible to put as much
as 64K on a single card. However, EEPROM can only be writtea ltmited number of
times (typically on the order of 100,000) and writes are skavEEPROM should not be

used for memory which is updated frequently.

Our on-card defeasible logic engine (DLE) needed to acctarrthese restrictions.
The DLE needs to compute all the literals that are defeagitiyable given a defeasible
logic theory. We partition the memory required for the aityon into two parts: stable and
volatile. Stable data is kept in EEPROM and volatile dateeistkn RAM. Our algorithm
keeps the rules of the theory in stable memory, while usirigtiv®e memory to track the
proof status of each of the literals in the theory. While thialtmemory required by the
DLE is proportional to the size of the theory, the volatilemuey required is proportional
to the number of literals in the theory. To conserve EEPRONNo1y, we keep only a
single copy of the rules in the defeasible logic theory. Tdopy is maintained by the
policy applet which is supplying the vote which contains tthie.

A policy applet implements a single policy automaton. Mawjiqy applets can be
installed on the same card. Starting from a template apjhletcode generator adds two
methodggetVote andupdate , which return a vote and update the state of the applet,
respectively. The set of all possible votes is computed bytte generator and each vote
is instantiated as a member variable stored in EEPROM. Ircdke generation process

we convert votes into a binary format that can be stored aad efficiently.

Figures 5.3 and 5.4 show th; emergency policy from Figure 4.5 after the code
generator has translated it into Java code. We have omitieeé ®f the code that deals
with the Java Card platform as this is common to all appletsvaould make the figure

much larger.

117

public class PolicyAppO extends Applet
implements Approvalinterface {
private static byte pls_mode var;
private static Votelmpl voteO, votel,
private static byte[] t;
public Vote getVote(byte inByteO, byte inBytel) {
t[0] = inByteO; t[1] = inBytel,;
switch (pls_mode_var) {
case O:
if ((Plslmported.E(t[0]))) { return voteO; }
if (true) { return votel; }
break;
case 1:
if ((Plslmported.E(t[0]))) { return voteO; }
if (true) { return votel,; }
break;
case 2:
if (true) { return votel,; }
break;
default:}
return NullVote.constructNullVote();
}
public static void install(byte[] bArray,
short bOffset, byte bLength) {
(new PolicyAppO()).register(bArray,
(short) (bOffset + 1), bArray[bOffset]);
vote0 = new Votelmpl((byte) O,
Vote.STRICT, new byte[] {},
(byte) 101,Vote.STRICT,new byte[[{});
votel = new Votelmpl((byte) -27,
Vote.STRICT, new byte[|{});

Figure 5.3: Java code generated from the emergency pBlidiL of 2).

118

public void update(byte inByteO,
byte inBytel, boolean yes) {
t[0] = inByteO; t[1] = inBytel,;
switch (pls_mode_var) {
case O:
if ((yes && (Plsimported.E(t[0])))) {
pls_mode var = 1; }
break;
case 1:
if ((yes && (PlsImported.E(t[0])))) {
pls_mode var = 2; }
break;
case 2: break;
default:
ISOException.throwlt(ERR_UNKNOWN_MODE);

}
}

public boolean select() {
AID Transaction_aidl
= JCSystem.lookupAID(TRANSACTIONAPP_AID,
(short) 0, (byte) TRANSACTIONAPP_AID.length);
if (Transaction_aidl == null) {
/[Cannot find the TransactionApp AID
ISOException.throwlt((short) 0x0010);
}
Transactioninterface siol = (Transactionlnterface)
(JCSystem
.getAppletShareablelnterfaceObject(
Transaction_aidl, (byte) 0x00));
if (siol == null) {
ISOException.throwlt((short) 0x0020); }
/I Register the policy to TransactionApp
siol.addPolicyApp();
return true;

Figure 5.4: Java code generated from the emergency pBlid of 2).

119

The policy and manager applets use a shared library of ddbaécontains the data
structures and functionality needed to encode votes aod #tle manager applet to query
the policy applets’ votes. More examples of the output of toide generation are available

at thePolaris web site (www.cis.upen.edu/"mmcdouga/polaris).

5.4 Adding Policies Dynamically

The policy model gives developers a formal framework for bormg the policies of
different stakeholders. Different departments in an gmige can each create their own
modular policies and when these policies are installed oard they can be checked
against each other to ensure that they are, for examplejatefinfle. This increases the
assurance that a payment card will behave properly whem gove user. However, the
Java Card/GlobalPlatform architecture allows new apptetse installedafter the card
has been issued. In this section we discuss how our framesaorke adapted for the case
where arbitrary parties, who may not be affiliated with theegprise that issued the card,
wish to add new policies. We call the set of policies that amgally installed thebase
policies The policies added later are called wgpplemental policies

In order to allow new policy automata to be checked with respe previously-
installed policies we require that an installed policy pdava way to access its policy
automaton. This can be stored on the card or referenced byLaAJ&veloper will com-
pose these policy automata with her new policy automata laeckahat the new combined
policy model is conflict-free (or whatever property is dedix. If the desired properties
hold, the developer follows the steps described in [22] civleixploit the GlobalPlatform
security model. She generates valid JCVM byte code and mgipto a certification au-
thority, who uses it to generate a CAP file with a digital siyine. The CAP file, together
with signed load and install instructions, are then supidliethe developer who uses them
to load and install the new applet onto the card. The digitalatures protect the card

from the installation of invalid CAP files. When the new appseselected (a basic Java

120

Card operation that chooses a particular applet for exaa)tit registers itself with the
manager applet installed by the primary issuer. If the @ppleubsequently removed, the

manager applet disables the card.

In order to protect the functionality of the base policiesnfrpolicies that were not
analyzed we modify the resolution function slightly. If tingedated set of applets generates
a T then we fall back to the base automata and evalyatsing only the votes from
the base policies. Since the base policies were installtatdéhe card was issued we
can be confident that they are conflict-free. Once the traiosacequest is approved or
rejectedall policy automata (base and supplemental) update theiratateontinue as if

the conflict had not occurred.

This illustrates the trade-off involved in adding policeimamically versus installing
them as a group; if policies are installed as a group it iseedsei verify that they work
correctly and do not run into conflict states. If policies adtled one-by-one the user

must re-check every policy addition to see if it introducewtonflicts.

Policies outside the card

Keeping policies on the card makes it easy for the user to geatieeir purchasing restric-
tions. However, there may be situations where the policesiio be kept somewhere else
where they can be consulted for every purchase—for exaraptbe bank’s transaction
processing server, or at a special server operated by thgeise or family that owns the

card.

Such an architecture would still benefit from a standard &npolicy framework. A
bank may want to examine policies that are sent by users iretisey do not damage
the transaction approval functionality; this task wouldédss costly if the analysis could

be done automatically using a Polaris-like tool.

121

memory required on card (bytes)
original SET 11291
modified SET 15586
increase due to modification 25%

Table 5.1: Code size for original and modified SET manageleapp

5.5 Experimental Results

5.5.1 Applet Size

A smartcard’s limited memory makes code size an importansicieration. To measure
the impact of our policy integration scheme we augmentedlchis Java Card imple-
mentation of the of the SET protocol and measured the codel&fore and after the
augmentation. Table 5.1 shows how much the applet sizeasedefor the Java Card
implementation of the SET protocol when we extended it to ausrepolicy integration

architecture. The second column of the table shows how m&PROM memory the

applet occupied on a Oberthur GalactIC Java Eaidter extending the SET applet with
a defeasible logic engine and the code necessary to manhgeayplets the total applet

size is only 25% larger.

A policy applet takes up additional space on a Java Card wleimstalled. A feasible
programmable purchase card architecture must have apgigtis are small enough to put
a number of policies on a smartcard. Table 5.2 shows the &the dive applets generated
from the automata in Figure 4.5. Once we have loaded the Janhsystem software, the
voting library and the manager applet, the Oberthur Galac#rd has room for about 33

policies with a mean size of 678.4 bytes.

122

Policy | memory required on card (bytes)
P 704
Pg 704
P.. 672
Py 608
P 704
mean 678.4
Table 5.2: Code size for selected policy applets

Response time in milliseconds

9000 -
8000

7000

6000

5000

4000

3000

2000

1000

Number of policies

Figure 5.5: Polaris purchase card response time

123

5.5.2 Purchase Card Response Time

To measure the on-card performance of the Polaris purclasgesgstem we tested the
response time of the system while varying the number of agiolicy applets on a card.
Figure 5.5 shows the time between sending transaction sedata to the card and receiv-
ing a response The figure shows that the response time is roughly propuatito the
number of active policies. We feel that a response time oeud@ seconds is acceptable
for purchase card transactions, meaning that our protatgpkl support nine simultane-
ous policies with an acceptable runtime—consumers aretosediting for a credit card
authorization. However, something that a consumer woutchatice—a delay of one or
two seconds at most—would be better in that it would allowcker checkout times and

reduce the likelihood of annoying the consumer.

We think the response time of our system could be reduced mwite effort. The
defeasible logic engine is has been optimized to use EEPRGtdad of RAM. We think
a moderate use of RAM could speed up the processing whileketping within the
small RAM space available on the card. Our inference algaribhas not been optimized
for the resolution function; it will check the provabilityf bterals that do not impact the
provability of the speciajes literal. A more specialized inference algorithm could giel

better response times.

Faster response times would allow Polaris to be used inagins like public transit
systems where a transaction is no longer than the time ndedwudpe a card through a
card reader. A project that investigated the use of smalsciar access to the Japanese
rail system set 100 milliseconds as the required maximumporese time [67]. Other

applications would also require faster response times.ekample, the EZ Pass system

Al the on-card experimental results were performed usingOberthur GalactlC Java Card. The
class files were produced using Sun JDK1.@%?javac compiler. The CAP files were generated using
the Oberthur Comsopolic converter. Other converters melg YCAP files of other sizes.

°The time was measured using the IBM JCOP Java Card commalhd®e policy applets were acti-
vated in a random order. The nine policies were the five frogufe 4.5, PC6 and PC12 from Figures 4.10
and 4.10, and two additional policies similar to the others.

124

equips vehicles with smart cards that communicate withsuokgdantennas to gather toll-
payment and traffic information. If a car is traveling at 6.@ters per second (about 15
miles per hour) then a 6 meter toll booth equipped with a stergje wireless detector
would need a response within a second. If a Polaris systenusesto guard access to an

EZ Pass account then the response time would have to be ub@@niilliseconds.

5.5.3 Code Generation

We measured the execution time of the Polaris code genematawvariety of policy mod-
els. We chose three policy models of realistic policishas three policies enforcing a
transaction limit, approved merchants and a five-purchasé Ir5 is the example from
Figure 4.5; and10 is r5 combined with r3 and policies PC6 and PC12 from the Penn
Purchase Card policies. To stress our tools we also crediéidia policy models: gn
consists ofn policies, each containing modes each with its own randomly generated
vote. The randomly generated votes consists of one defedstic rule with 0-4 an-
tecedents. We randomly choose between strict, defeasillldefeater rules. Literals are
selected randomly from a set of 27 literals, one of which & gpecial literales. All
random distributions are uniform. We wrote the generatgd flkes to buffers in memory
to minimize the cost of interacting with the file systém

Figures 5.6 and 5.7 show the time needed to convert the palagel to Java. Our
tool ran out of memory when we tried to load the g90 model soawdctcnot test the code
generator on anything larger than the g80. For realisticigsl the code generation time
(which includes type checking) is very acceptable at undersecond. Even for very large
policy models like g70 and g80, which by file size is more th@@ times the size of the r5
model, the code generation time is under 15 seconds. Iné3duB and 5.9 we compare
the execution time to the size of the model, as measured Igizb®f the XML files used

to store the model. For example, the r5 model from Figure & Blikilobytes, while the

3All the off-card execution time experiments were carriedd @u a 542MHz (as reported by Windows
XP) Pentium Il running Windows XP Professional, with 256NRAM. We used the Sun Java HotSpot
Client VM v1.5.0-b64).

125

Execution Time (ms)

300

250

200

150

100 |

50 +—

r3

5

r10

Policy Model

g2

g5

gl0

Figure 5.6: Code generation performance on small models

Execution Time (ms)

14000

12000

10000

8000

6000

4000

2000

| s— |

—

g10

g20

g30

g40 g50
Policy Model

g60

g70

g80

Figure 5.7: Code generation performance on large models

126

200
180 A
160
140

120 = —
- —e—Real Policies

80 —m— Atrtificial Policies

40

20

0 ‘ ‘

0 10 20 30
Model Size (kb)

Execution Time (ms)

Figure 5.8: Code generation performance as a function oehrgige on small models

14000

12000 /
é 10000 /
(0]
E 8000 /./ —e— Real Policies
S 6000 —m— Artificial Policies
5 /I/
9 4000
x
ni

2000

0 T T T
0 2000 4000 6000 8000

Model Size (kb)

Figure 5.9: Code generation performance as a function nadcgte on all models

127

Policy Model| num. of policies| num. of vote combinationstime (ms)
r3 3 2 5
r5 5 16 43
r10 10 16 571
g2 2 4 5
g3 3 27 75
g4 4 256 1640
g5 5 3125 31130

Table 5.3: Conflict checking execution time for various pplnodels.

080 model is 6500 kilobytes. The code generation time isreisdly proportional to the
size of the model for both the realistic and artificial modals shown in Figures 5.8 and
5.9.

5.5.4 Conflict Detection

We performed similar experiments to measure the conseevatinflict detection algo-
rithm discussed in Section 5.2. This algorithm examinep@dkible combination of votes
to check for conflicting combinations. It is conservativecs it does not use reachability
information to ignore combinations of votes which will nexecur in a running policy
model.

We restricted our measurements to smaller models as thethlgas less scalable
than the code generation algorithm. Again we measured oee ttealistic policy models
and we measured artificial policy models g2, g3, g4 and g5leTaB shows the results of
our experiments. The columns list the number of policy aatanm each model, the num-
ber of distinct vote combinations that are possible in eaoteh and the time required to
perform the conflict analysis. While we were able to analykewr realistic models in
under a second, our artificial examples are more demandiigreguired more than 31
seconds of execution time. This difference in performasadue to the different charac-

teristics of the real and artificial models. In our real p@gcmany automata submit votes

128

that are identical to other automata—our algorithm can igramy duplicate votes since
they will not affect the result of resolution function. Inrdeast, the artificial models usu-
ally all submit unique votes, and each automaton has marsitjesotes it could submit.
This is reflected in the fourth column, which shows the nundjerte combinations in
the artificial models growing at a cubic rate with respecti®number of policies, while

the realistic policy models do not have more than 16 distmoteé combinations.

5.6 Summary

In this chapter we presented the Polaris suite of tools—#ofpyee model-based design
framework. Polaris includes tools to edit and analyze paiatomata. Once a designer is
satisfied with a policy design, Polaris will generate Javas® code that can be compiled
and run on a Java Card in a form that maintains the modulaststeiof the policy model,
policy applets derived from automata can be added to a camdmdigally in order to
customize a purchase card.

Our experimental results demonstrate the feasibility of foamework. Applets de-
rived from our policy automata occupy on average under 7Q0sbgf space on a card,
allowing us to store more than 30 on a typical multi-applaatard. A Polaris-equipped
Java Card is capable of enforcing up to 9 policies while na@mimg response times under
10 seconds. Our code generation algorithm is capable oepsitg policy sets that are
much larger than the size of the the Penn Procard policy sétc@ade generation for real-
istic examples was well under a second and thus presentsstactdfor a policy designer.
Our conservative conflict detection algorithm was also édleandle realistic policy sets
and terminate within one second, making it easy for a polexetbper to check her policy

before compilation.

129

Chapter 6

Security

In this chapter we discuss some security issues relatedrtmodel and implementation
of a programmable purchase card. These issues include suwmptons about the envi-
ronment and adversaries, which attacks we aim to prevernthvéttacks the platform or

payment infrastructure is responsible for preventing,\ahith attacks we cannot prevent.

6.1 Trust Relationships

One unusual aspect of our application that we only parttalist the cardholder. While we
certainly would like to write policies that reduce the cokagurchase card being stolen
and used by an unauthorized (and therefore completelystettyindividual, many of the
policies in our examples deal with cardholders who shouig hgartial but not complete
access to the resources protected by the card. In our cageoliby developers and card
issuers are trusted to determine what transactions arerantbapermissible, while the
user is expected to occasionally violate these policiesae@éhe need for enforcement by
the card itself. The policy enforcer on the card acts on Betidhe secondary issuer, not
the cardholder. However, we do not view the cardholdertstrass an adversary—there
is some obligation to provide as much service to a valid aald#r as possible within the

constraints of policies (this obligation corresponds t® piinciples of transparency and

130

minimality in Section 3.1.3).

We must make certain assumptions to consider our prograterpabchase card se-
cure. Chief among these is we must trust the party—typidhitythe merchant—who is
supplying the transaction data to give accurate informatfahe cardholder can conspire
with a merchant so that an alcohol purchase is portrayed asalmenign item then there
is little a purchase card can do to prevent abuse of the caegu$tify this assumption par-
tially by assuming that our payment card uses the existirapéial infrastructure, where
payment card issuers like banks and credit cards, in concgriaw enforcement, make

some effort to punish merchants who commit fraud.

This dependence on the merchant is exacerbated by thedicatmbilities of smart-
cards. Most smartcards do not have an internal clock so dayniation about a trans-
action’s time and date must come from the merchant. The raatahay conspire with
the cardholder to manipulate the time reported to the cathgps avoiding time-based

restrictions like the Penn Procard’s policy that limits adc 25 transactions per day.

Time is just one example of dynamic information that we wdikd to use to make
policy decisions. Another is facts about who has been drbfrpen a list of approved sup-
pliers. Similarly, a smartcard might wish to disable itsefen an employee is terminated—
a capability that would allow it to enforce the Procard ppRC2 in Section 4.4.2. As with
time information, this data could be gathered by the merchtitie time of purchase and
passed to the card, but this increases our dependence oretbkeant (who, after all, has
little incentive to inform the card that he is no longer apa). Gathering relevant in-
formation may also put a high burden on the merchant, who swsiehow contact the

appropriate databases for a particular set of policies.

We can use a secure signature scheme to reduce our depemtetice merchant.
Many smartcards are capable of performing cryptographéaipns, so it is feasible to
demand information supplied by the merchant be signed bysdaed third party. Lyu-

bich [46] gives a protocol for getting trusted time informoat using such a mechanism.

131

However, we still must depend on the merchant to gather stfohnnation, as the smatrt-
card has no network connectivity other than what is supfietthe machine that itis com-
municating with. As mentioned above, gathering this sigihaté may be burdensome—a
merchant may have a standard time server to get signed dawathl current time, but it
would be much more complex to fetch signed information frauheuniversity or com-
pany that does business with the merchant.

The limitations described above can be mitigated to a delgyegssuming that our
purchase card is one element of a layered policy enforcesymtém. In other words,
we offer an addition to the existing payment infrastructurat a replacement for it. For
example, a purchase card transaction will still be subeahiecks by banks and credit

card companies to see if a given card has been revoked.

6.2 Attacks Using the Smartcard Platform

In addition to assuming accurate information, we must adsoime the Java Card platform
will behave as designed. In particular, we need to assumeathapplet installed on
the card will not have access to the private data in our maregmaet or policy applets.
The Java Card uses a firewall mechanism [65, 66] to enforee bit if this system is
compromised then an attacker could modify the manager appfelicy applet to allow
previously forbidden transactions, or deny all transaxstie-for example, an attacker could
modify the P; policy from Figure 4.5 so that it always remains in the stabere it thinks
three transactions have occurred and therefore no morédsheyermitted.

Our ability to dynamically add policy applets opens anotemue of attack. A card-
holder (who has ample access to the card) or a merchant (wlichenee access to the
card at the point of sale) may attempt to install a malicioolécg. Such a policy could
unduly restrict transactions (for example, a merchant magtwo prevent purchases at
a competitor) or override existing restrictions (for exaep@a child may wish to override

a spending limit policy installed by a parent). To preventlsattacks we rely on the

132

GlobalPlatform [20] procedures for installing and remayapplets. Since policy applets
are just like other Java Card applets, the security measesagned to protect cards from
malicious installation or deletion of applets extend toigoapplets. The GlobalPlatform
allows a card issuer to require cryptographic signatureariy installation or deletion of
applets. An applet can therefore only be installed by a panty knows the relevant secret
keys. These cryptographic restrictions partially mirfoe trust relationship described in
the previous section—the key holders are the trusted catetisand secondary issuers,
while the cardholder lacks the necessary secret informatf secondary issuer like a
parent or enterprise can keep the keys secret from the ddethand therefore prevent

installation of malicious applets or deletion of previguisistalled policy applets.

Our implementation takes further steps to prevent abuse-pdlicy applet is some-
how deleted the manager applet refuses to process any rfaurémsactions, effectively
disabling the card. We could implement additional safedsiavhereby a policy applet
shares a secret with the manager applet and therefore chaneplaced with another

applet with the same name.

A more humdrum attack to our payment card involves removiggy from the card
mid-transaction—sometimes this loss of power is calledear't Since a smartcard is
typically powered by the card reader, this attack is as smaglremoving the card from
the reader. In our current implementation the policy ajgalgidate their state to record an
approval or rejection before the manager applet notifiesdhe reader that the transaction
is approved. Therefore there is a brief amount of time whemesof the policy applets
have recorded the purchase but the purchase has not taken amoving the card at
this point will leave the policy applets in an inaccuratetestaThe Java Card platform
provides some support for simple atomic memory updates-efample, we can ensure
that either all policy applets are updated or none are. Timsireates an attack where
someone removes power in mid-update, leaving some poligietpupdated while others
are not. However, it does not eliminate a tear attack egtira careful adversary could cut

power at just the time when we have committed all updatedieutransaction approval (or

133

disapproval) has not been conveyed to the merchant. Umnfately the Java Card atomic
update system will not allow atomic updates that span mlel@glls to the card, so we
cannot delay committing the updates until we receive someo$confirmation from the
merchant. Even if such updates were possible, an attackédt cemove power from the
card before the confirmation is conveyed, leaving the caedstate where the transaction
has occurred but the policy applets have not recorded itbifidts and Poll [31] give a

technique for reasoning about tears in Java Card programs.)

6.3 Summary

The security of our system depends on various assumptiang #ie parties taking part
in transactions and the technology used to implement ounpaycard. In particular, we
trust the merchant to supply accurate transaction infaomatr to supply such informa-
tion from a trusted party. We also trust the Java Card haraad system to faithfully
implement the protections described in the Java Card andaBatform specifications.
We leverage the security assurances of the the Java Cafdrplaind the established

payment infrastructure to ensure that our system behacesete

134

Chapter 7

Conclusion

We have presented a thorough examination of a programmalglagnt card—a smart-
card capable of holding and enforcing multiple modular pasing policies. The appli-
cation has been explored from a formal perspective by piog@ssuccinct formal model
for modular policies called policy automata. Building omstformal model, we defined
properties of policies and algorithms for checking thespprties.

We also demonstrated how this formal model can be part offaotefe model-based
design framework. The effectiveness of the model was detraied by showing how
it can encode the real world purchasing policies of the Ui of Pennsylvania. The
feasibility of our model was demonstrated by implementingeditor, an analysis tool,
and a code generator which can translate the formal deseript policies into executable
Java Card applets. Our experiments show that the restnieslirces of a Java Card
do not prevent our policies from giving response times thateaceptable for real world

purchasing situations.

7.1 Open Issues and Future Work

There are a number of open issues that offer directions fardunvestigation.

135

One research direction related to the formal model of théiegtpn deals with reject-
observing policies like the ATM policy discussed in Sect®h.5. Recall that this policy
disables a card after three failed attempts to make pursttaaé violate a policy. Such
a policy is actually used for bank cards, so it would be nicade our formal model to
analyze it. It is possible to encode the policy as a policpeaton. However, the formal
definition of ‘security policy’ discussed in Section 3.1.@ed not distinguish the ATM
policy from a policy that blocks bad purchases without evsalling the card. It is not
clear if there is a modification of the security policy defmit that retains the simplicity

of the current security policy framework.

We would like to further investigate different notions ofinement in the hopes of
finding a definition that is both succinct and appropriatepfaicy automata. Ideally, such
a definition would allow us to characterize the compositibpdicy automata formally
without referring to the operational semantics of the aw@ttmmWith truncation automata
we know that the composition of two automata will enforce ¢bajunction of the corre-

sponding policies—we would like to make a similar statenienpolicy automata.

Section 5.4 describes adding policy automata to cards dgadlygn The implemen-
tation allows a user to install some policies, make somehases, and then add more
policies. However, the formal semantics assumes that adips are installed before any
purchases are made. We would like to extend the formal sérsantd the algorithms for
checking automata properties to account for the possilofiadding new policy automata

in the middle of a transaction sequence.

In the current formal model any policy can submit any votewideer, it may be useful
to have restrictions on what votes a given policy may be ableubmit. For example,
in our example in Section 4.2, thez policy signaled that a transaction request is an
emergency transaction by submitting a vofé “— ¢”, which modified the effect oPPy’s
vote by asserting that the literals true. However, any policy could submit the same vote,
effectively fooling Py into thinking thatPz had marked the transaction as an emergency.

If we added some restriction that allowed ority to submit votes that imply then Py

136

could be sure that ¥ was marked as true then it was a genuine emergency as degided b
Pg.

Similarly we may want to restrict which policies can oveeridther policies. For
example, the Penn Procard policy PC9 sets a $5000 per maritloh purchases, but this
limit can be raised with approval from a senior financial @fidNVe can override a policy
automaton implementing PC9 by installing a new policy thddrsits votes that override
the votes of the PC9 automaton—however, we may want to erssumehow that only

policies approved by the senior officer could submit suchta.vo

Many formal trust management systems [38, 36, 40] have bexgroped that deal with
delegation as a mechanism for authorization. The progrdstar@ayment card enables
delegation by giving enterprises or other parties a way siauize a payment card and
then delegate it to another party. However, this delegasi@xternal to the formal model
of policies discussed in Chapter 3. We are interested instigaing the connection (if
any) between the kind of delegation whereby a secondargrggues a customized card
to a cardholder, and the existing formal systems for desuyidelegation in trust man-
agement. Perhaps this direction of research could be caubiwth some mechanism for

restricting which policy automata can submit certain vpsssdescribed above.

This dissertation discusses using defeasible logic s&t&sras votes. However, it is
likely that the people who write real world purchasing p@gwill not be familiar with
such a formal notation and cannot invest the time to masteadible logic. Instead, it
would be desirable to have some a simpler language for \gntotes, with a semantics
based on defeasible logic. Such a language could be basethple £nglish language
templates which are translated to defeasible logic; formgta, a policy designer may
write “tentative yes if not an emergency”, which would thentkanslated to“e = yes”.

Halpern and Weissman use a similar approach for descrilmhggs in Lithium [24].

As discussed in Chapter 6, policies may need access to dath wéinnot be kept
on a payment card. For example, a policy that blocks purchaddle an employee is

suspended must somehow learn of the suspension. Chaptetdha#t some possible

137

techniques for using such data; in the future we would likBesh out these ideas, adapt
our formal model if necessary, and implement a system thatrely uses off-card data
for policy decisions.

Our implementation can be improved in a number of ways. ubtimization of the
manager applet on the card, especially the defeasible éogjime, is necessary to achieve
transaction processing that is fast enough to handle dafepdicies, or to make access
control decisions in domains that require response timdsmasecond—for example, if a
cardholder engages in a transaction by walking or drivirgj pavireless card reader. One
possible strategy for optimization is to use some sort afemzntal compilation, where
defeasible logic votes are ‘compiled’ when a policy is iflsthso that when the votes
are resolved a simple table-lookup is used instead of rgnmidefeasible logic inference
algorithm.

The analysis tool currently implements a conservative adrghecking algorithm. In
the future we would like to implement the full conflict cheegialgorithm which makes
use of reachability information. Additionally, we wouldké to implement algorithms for
checking redundancy (both normal and strong).

Finally, while we focused on the programmable payment cppdi@ation in this work
we think the policy automata framework could be applied imeotdomains. Some pre-
liminary work has been carried out at the University of Pethrania Security Lab that
applies our techniques to regulating mobile phone use. feprat the University of Illi-
nois at Urbana-Champaign has applied some of our techniquasnaging policies for
web services. We are interested in continuing this direcip@rhaps extending the formal

model or defining new properties if the new applications esatrr

138

Bibliography

[1]

[2]

[3]

[4]

[5]

Bowen Alpern and Fred B. Schneider. Recognizing safatylavenessDistributed
Computing 2(3):117-126, 1987.

Rajeev Alur, Radu Grosu, and Michael McDougall. Effidieeachability analysis of
hierarchical reactive machines. Rioceedings of the 12th International Conference

on Computer Aided Verificatiopages 280-295, 2000.

Rajeev Alur, Michael McDougall, and Zijiang Yang. Exjtiog behavioral hierarchy
for efficient model checking. liProceedings of the 14th International Conference

on Computer Aided Verificatigpages 338—342. Springer-Verlag, 2002.

Grigoris Antoniou, David Billington, and Michael J. Mah On the analysis of
regulations using defeasible rules.32nd Annual Hawaii International Conference

on System Sciences (CD/RQNpmputer Society Press, 1999.

Ken Arnold, James Gosling, and David Holm@$e Java Programming Language

Addison-Wesley Longman Publishing Co., Inc., 2000.

[6] Yair Bartal, Alain J. Mayer, Kobbi Nissim, and Avishai Wb Firmato: A novel

[7]

firewall management toolkit. IFEEE Symposium on Security and Privapages
17-31, 1999.

G. Berry and G. Gonthier. The synchronous programmimgUegeESTEREL de-

sign, semantics, implementation. Technical Report 84RIMA\ 1988.

139

[8] David Billington. Defeasible logic is stableJournal of Logic and Computation
3(4):379-400, 1993.

[9] Grady Booch, Jim Rumbaugh, and lvar Jacobsbine Unified Modeling Language
User Guide Addison-Wesley, 1998.

[10] C.-B. Breunesse, N. Cataiio, M. Huisman, and B.P.Foldac Formal methods for
smart cards: an experience report. Technical Report NDBE®, University of Ni-

jmegen, Department of Computer Science, Sept 2003.

[11] Gerhard Brewka, Jurgen Dix, and Kurt Konoligelonmonotonic Reasoning: An

Overview CSLI Lecture Notes 73. CSLI Publications, Stanford, CA9719

[12] Lilian Burdy, Yoonsik Cheon, David Cok, Michael D. Etngoe Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of Jitiols and appli-

cations.Software Tools for Technology Transfa005.

[13] Marco Cadoli and Marco Schaerf. A survey of complexégults for nonmonotonic
logics. Journal of Logic Programmingl7(2/3&4):127-160, 1993.

[14] M. Chechik, S. Easterbrook, and V. Petrovykh. Modek€king over Multi-valued
Logics. In J. N. Oliveira and P. Zave, editoFME 2001: Formal Methods for In-
creasing Software Productivity International Symposidfromal Methods Europe

pages 72-98. Springer Verlag, 2001.

[15] E.M. Clarke and R.P. Kurshan. Computer-aided veriiicat IEEE Spectrum
33(6):61-67, 1996.

[16] E.M. Clarke and J.M. Wing. Formal methods: State of ttieaad future directions.
ACM Computing Survey28(4):626-643, 1996.

140

[17] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and NMao$8loman. The ponder
policy specification language. In Morris Sloman, edilngceedings of the Interna-
tional Workshop on Policies for Distributed Systems andudets (POLICY), LNCS
volume 1995, pages 18-38, 2001.

[18] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridg® Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for jav&rdceedings of the
ACM SIGPLAN 2002 Conference on Programming language designmplemen-
tation, pages 234-245. ACM Press, 2002.

[19] Philip W. L. Fong. Access control by tracking shalloweextion history. INEEE
Symposium on Security and Privagages 43-55, 2004.

[20] GlobalPlatform.GlobalPlatform Card Specification v2.1.March 2003.

[21] Benjamin N. Grosof, Yannis Labrou, and Hoi Y. Chan. A ldeative approach to
business rules in contracts: courteous logic programs in kmProceedings of the

1st ACM conference on Electronic commeigages 68—77. ACM Press, 1999.

[22] Carl A. Gunter. Open APIs for embedded security. In L@zdelli, editor,Pro-
ceedings of the European Conference on Object Orientedrnagping July 2003.

[23] Joshua D. Guttman. Filtering postures: Local enforeetfior global policies. Tech-

nical report, The MITRE Corporation, 1997.

[24] Joseph Y. Halpern and Vicky Weissman. Using first-ordegjic to reason about
policies. InProceedings of the 16th IEEE Computer Security Foundatgmdkshop
pages 187-201, 2003.

[25] David Harel. Statecharts: A visual formalism for complsystems. Science of
Computer Programming(3):231-274, June 1987.

141

[26] Jonathan D. Hay and Joanne M. Atlee. Composing featmédsresolving interac-
tions. InProceedings of the 8th ACM SIGSOFT international symposinrRoun-
dations of software engineeringages 110-119. ACM Press, 2000.

[27] Allan Heydon, Mark W. Maimone, J. D. Tygar, JeannettewWing, and Amy Moor-
mann Zaremski. Miro: Visual specification of securitfeEE Trans. Softw. Eng.
16(10):1185-1197, 1990.

[28] James A. Hoagland, Raju Pandey, and Karl N. Levitt. 8gcpolicy specification
using a graphical approach. Technical Report CSE-98-3yausity of California,

Davis Department of Computer Science, 1998.

[29] Gerard J. HolzmannDesign and Validation of Computer ProtocolBrentice-Hall,

Englewood Cliffs, New Jersey, 1991.

[30] John E. Hopcroft and Jeffrey D. Ullmanntroduction to Automata Theory, Lan-
guages, and Computatioddison-Wesley, Reading, Massachusetts, 1979.

[31] E.-M.G.M. Hubbers and E. Poll. Reasoning about cartstead transactions in Java
Card. In M. Wermelinger and T. Margaria-Steffen, editéwsndamental Approaches
to Software Engineering, 7th International ConferenceSEAR004volume 2984 of
LNCS pages 114-128. Springer-Verlag, 2004.

[32] Nijmeegs Instituut Voor Informatica En Informatiekdm Esc/java 2.http://

www.cs.ru.nl/sos/research/escjava/

[33] International Organization for Standardizati®®0 18245:2003 Retail financial ser-
vices — Merchant category codepril 2003.

[34] Bart Jacobs, Hans Meijer, and Erik Poll. VerifiCard: ArBpean project for smart
card verification. Newsletter 5 of the Dutch Association for Theoretical Cotapu
Science (NVT])2001.

[35] Java compiler compilehttp://javacc.dev.java.net/

142

[36] Trevor Jim. Sd3: A trust management system with cedi&ealuation. ISP '01.:
Proceedings of the IEEE Symposium on Security and Prjyaagye 106. IEEE Com-
puter Society, 2001.

[37] Steven C. Johnson. Yacc: Yet another compiler compiletUNIX Programmer’s
Manual volume 2, pages 353—-387. Holt, Rinehart, and Winston, Nevk,YNY,
USA, 1979.

[38] Butler Lampson and Ron Rivest. SDSI—a simple distelogecurity infrastructure.

http://theory.lcs.mit.edu/"cis/sdsi.html

[39] Xavier Leroy. Java bytecode verification: algorithnmsldormalizations.Journal of
Automated Reasoning§0(3—4):235-269, 2003.

[40] Ninghui Li, Benjamin N. Grosof, and Joan FeigenbaumleDation Logic: A logic-
based approach to distributed authorizatis&@M Transaction on Information and
System Security (TISSE@gbruary 2003.

[41] Jay Ligatti, Lujo Bauer, and David Walker. Edit automeaEnforcement mechanisms
for run-time security policiesinternational Journal of Information Securit004.

To appear.

[42] Emil C. Lupu and Morris Sloman. Conflicts in policy-basdistributed systems
managementEEE Trans. Softw. Eng25(6):852—869, 1999.

[43] M. Lyubich. Eine SET Kundemborse mit der Java Card tsttézung. InGl Infor-
matiktage 2000Konradin-Verlag, November 2000.

[44] M. Lyubich. Die architekturen von SET mit der Java CdrdA. Bode and W. Karl,
editors,ITG Fachbericht, APC 2001 Arbeitsplatzcompu@01.

[45] M. Lyubich and C. Cap. Eine implementierung von SET Java. InTagesband
Netzinfrustruckhur und Anwendugdir informationsgesellschafpages 208-214.
Dr. Wilke Verlag, 1998.

143

[46] Mykhailo Lyubich. Architectural Concepts for Java Card Running a Payment Pro-
tocol and Their Application in a SET WalletPhD thesis, University of Rostock,
2003.

[47] Michael J. Maher. Propositional defeasible logic hiaedr complexity.Theory and
Practice of Logic Programmingdl(6):691-711, 2001.

[48] Michael J. Maher, Andrew Rock, Grigoris Antoniou, DdBillington, and Tristan
Miller. Efficient defeasible reasoning systemisiternational Journal on Atrtificial
Intelligence Tools10(4):483-501, 2001.

[49] Mastercard and VisaSET Secure Electronic Transaction Specification: Business

Description May 1997.

[50] Mastercard and VisaSET Secure Electronic Transaction Specification: External
Interface GuideMay 1997.

[51] Mastercard and Visé&SET Secure Electronic Transaction Specification: FormalPr
tocol Definition May 1997.

[52] Mastercard and VisaSET Secure Electronic Transaction Specification: Program-
mer’s Guide May 1997.

[53] W. S. McCulloch and W. Pitts. A logical calculus of theeas immanent in nervous
activity. Bull. Math. Biophysics5:115-133, 1943.

[54] Sun Microsystems. Java card platforhttp://java.sun.com/products/

javacard/

[55] Donald Nute. Defeasible reasoning.Rrmoc. 20th Hawaii International Conference
on Systems Sciengeages 470-477. IEEE Press, 1987.

[56] Donald Nute. Defeasible logic. In D.M. Gabbay, C.J. geg and J.A. Robinson,
editors,Handbook of Logic in Artificial Intelligence and Logic Praanming vol-
ume 3, pages 353—-395. Oxford University Press, 1994.

144

[57] University of Pennsylvania. Transaction complianaelits. http://www.

purchasing.upenn.edu/about/pm_audit.php

[58] D. Pool. Alogical framework for default reasoningytificial Intelligence 36(1):27—
47, 1988.

[59] R. Reiter. A logic for default reasoningArtificial Intelligence 12(1-2):81-132,
1980.

[60] Fred B. Schneider. Enforceable security policieSCM Trans. Inf. Syst. Secur.
3(1):30-50, 2000.

[61] Saheem Siddigi and Joanne M. Atlee. A hybrid model farc#fying features and
detecting interactiongComputer Networks: The International Journal of Computer

and Telecommunications Networkjrgf(4):471-485, 2000.

[62] Medical Economics Staff.Physicians’ Desk Referenceflhomson Healthcare, 57
edition, 2003.

[63] Scott D. Stoller and Yanhong A. Liu. Security policy tarages and enforcement. In
Proceedings of the Third Russian National Conference ormbfattics and Infor-
mation Technology Security (MaBIT-Q€ctober 2004.

[64] Sun MicrosystemsJava Card 2.2 Application Programming Interfacgeptember
2002.

[65] Sun MicrosystemsJava Card 2.2 Runtime Environment (JCRE) Specificatiane
2002.

[66] Sun MicrosystemsJava Card 2.2 Virtual Machine Specificatiaiune 2002.
[67] Hideyuki Tokuda, September 2004. Keynote address &6MT 2004, Pisa, Italy.

[68] Kansas State University. Bandera projdndtp://bandera.projects.cis.

ksu.edu .

145

[69] University of PennsylvanidJniversity of Pennsylvania Purchasing Card Cardholder

Guide April 2003.

[70] Joachim van den Berg and Bart Jacobs. The loop complejaf/a and jml. In
Proceedings of the 7th International Conference on Toold Algorithms for the

Construction and Analysis of Systerpages 299-312. Springer-Verlag, 2001.

[71] Willem Visser, Klaus Havelund, Guillaume Brat, and 8gdioon Park. Model check-
ing programs. IProceedings of the The Fifteenth IEEE International Cosrfiee on
Automated Software Engineering (ASE’'Qf8age 3. IEEE Computer Society, 2000.

[72] Avishai Wool. Architecting the lumeta firewall analyzdn 10th USENIX Security
Symposiunpages 85-97, Washington D.C., August 2001.

146

